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Our method Split-sum

Figure 1: A production scene from a recently shipped AAA-game (© Activision Publishing, Inc.) Indirect specular illumination for every
material rendered with our method compared to a mip-chain of prefiltered environment maps using the split-sum method [Kar13]. Our method
requires 200× less memory, enabling alias-free reconstruction over continuous roughness and angular domains using only 33 coefficients
per-color channel at roughly equal time (9.95ms vs. 9.85ms). Moreover, it avoids systemic errors caused by the split-sum approximation, e.g.,
hallucinated and implausible white (orange inset) and green (green inset) reflections, while our method faithfully captures such effects.

Abstract
We propose a high-performance and compact method for computing glossy specular reflections. Commonly-used prefiltered
environment maps have large storage requirements and high error due to constrained treatment of view-dependence. We
propose a factorized spherical harmonic exponential representation that exploits new observations of the benefits of log-space
reconstruction for reflectance. Our method is compact, properly accounts for view-dependent reflections, and is more accurate
than the state-of-the-industry solutions. We achieve higher quality results with an order of magnitude less memory, all with
efficient and alias-free reconstruction of glossy reflections from environment lights and continuously-varying material roughness.

CCS Concepts
• Computing methodologies → Rendering; Reflectance modeling;

1. Introduction

Image-based lighting (IBL) is a widely used technique for rendering
glossy and specular reflections in interactive applications, such as

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



2 of 11 Silvennoinen et al. / Spherical Harmonic Exponentials for Efficient Glossy Reflections

video games and architectural visualization. In contrast to interactive
ray tracing, which requires high-end hardware support, IBL scales
across a wide array of target platforms including mobile devices
and virtual reality (VR) headsets. The most commonly used IBL
method in industry is the “split-sum" approximation [Kar13; Laz13],
which uses a precomputed mip-chain of filtered environment maps
to approximate the specular component of light transport at runtime.
This approach, however, suffers from two key drawbacks: large
memory requirements and approximation error caused primarily by
its limited treatment of view dependence.

We present a new, factorized spherical harmonics representation
for glossy environment maps that covers 75% of the linear rough-
ness range (with an underlying Cook-Torrance/GGX BRDF). We
demonstrate that our method significantly reduces reconstruction
error while requiring an order of magnitude less memory, enabling
alias-free reconstruction of specular lighting from environment maps
at equal performance to “split-sum” methods.

As a representative example, a typical large-scale AAA produc-
tion scene utilizes 8×103 precomputed reflection probes: here, even
with reduced resolution and GPU-friendly block compression, stor-
ing this data would require roughly 700MB of runtime memory,
exceeding the available budget on modern target platforms such as
PC, Xbox One, Xbox Series X/S, PS4, PS5, and mobile devices;
in contrast, our representation requires only 3MB storage with an
uncompressed 32-bit floating point format. The added memory effi-
ciency of our representation allows us to store all reflection probes
in memory, facilitating a scalable level-of-detail mechanism that sig-
nificantly improves visual quality across a wide range of platforms.

Concretely, our technical contributions are:

• a factorized shading model that accurately reconstructs reflected
radiance from environment lights and for continuously-varying
roughness, i.e., supporting materials across much of the large
perceptual roughness range,

• a spherical harmonics-based compression strategy that leverages
band-limiting due to the log transformation,

• a simple, efficient point-wise exponentiation compared to earlier
spherical harmonics exponentiation methods [RWS*06], and

• an efficient and stable log-space fitting strategy that optimizes a
proxy of relative MSE in linear space, reducing the sensitivity to
outliers that the human visual system is sensitive to.

2. Previous Work

Work in interactive, precomputation-based appearance and shading
spans several decades. We discuss the most relevant prior works
and refer readers to more comprehensive surveys of appearance
modeling [DRS08] and precomputed radiance transport [Ram09].

2.1. Prefiltered Environment Maps

Kautz et al. [KVHS00] overview prefiltered environment map meth-
ods [Gre86; HS99] that treat radially symmetric BRDFs with lim-
ited view-dependent effects. In this setting, environment illumination
is parametrized by the perfect reflection direction and prefiltering
assumes that the viewing and normal directions are aligned. This re-
duces the dimensionality of the problem, as well as memory cost, but

at the expense of quality and flexibility. At runtime, specular lighting
can be computed using a simple lookup. An important extension of
this simple approach uses a more elaborate lookup heuristic based
on the reflectance profile shape, and averages several lookups to
obtain higher quality results with modest added overhead [KM00].

Recent prefiltering-based methods (e.g., [SBN15]) extend into
broader classes of BRDFs – allowing for a wider variety of materials
to be represented – but often at a cost several orders of magnitude
higher in memory than our approach, and with lower performance.

In contrast, our method treats view-dependence explicitly and
leverages new and existing observations of log-space fitting to signif-
icantly reduce storage requirements whilst retaining high accuracy.

Ramamoorthi and Hanrahan [RH02] drop the radial symmetric
constraint with a precomputation-based method for specular reflec-
tion under environmental illumination that supported a broader class
of BRDFs. Their representation is based on a cubemap of spherical
harmonics coefficients that encode view-dependent preintegrated
shading. Similarly, we also preintegrate shading, however, our fac-
torized representation uses an order of magnitude less memory as
it does not require large high-dimensional cubemaps. Concurrently,
Latta and Kolb [LK02] observed that a homomorphic factorization
stored in cube maps (with a similar parameterization as in [RH02])
was better suited to the representation. Motivated by these works,
we propose a parameterization that – when combined with our fac-
torization and log-space reconstruction – results in both a more
compact representation and one that is fast and stable to fit. Notably,
to our knowledge, ours is the first method to leverage the fact that
log-space lighting exhibits lower frequency content, and thus it is
better suited for compact frequency-based representation.

To our knowledge, the most widely adopted image-based light-
ing technique in high-performance graphics (e.g., video games) is
the “split sum” [Kar13; Laz13] (Section 3.2). This method is the
most relevant prior art, as it currently strikes the most appropriate
design trade-off between runtime performance, storage, flexibility,
and accuracy. Specifically, Karis’ method [Kar13] – based on the
Cook-Torrance BRDF (Section 3.1) – prefilters environment lights
with circularly symmetric normal distribution function and approxi-
mates reflection with a two-integral product that allows for dynamic
runtime materials. As with prefiltering methods, however, this repre-
sentation also constrains view variability (i.e., due to the circularly
symmetry prefiltering kernel), leading to significant error, particu-
larly as roughness increases. In contrast, our representation takes
explicit account of view-dependence and yields much lower error
while simultaneously reducing the memory cost, all at equal or bet-
ter performance (Section 5). We additionally support continuously-
varying roughness settings, avoiding the memory and reconstruction
limitations of roughness discretization-based methodologies.

2.2. BRDF Models, Approximation, and Representation

Analytic Models. The most pervasive reflectance models in in-
teractive rendering rely on analytic representation for (easily-
parallelizable) computation, and less so on (high-dimensional) tabu-
lation/memory operations. Blinn’s [Bli77] seminal phenomenologi-
cal model of specular reflection has been extended to incorporate
Fresnel effects [Sch94], as well as leading to the development of
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more expressive models, albeit still phenomenological [LFTG97].
Several extensions of this latter work are notably well-suited to our
environmental lighting setting, using approximations with either
few isotropic cosine [MLH02] or Gaussian [GKD07] lobes, both
naturally suited to efficient hardware implementation.

Many works draw on the functional approximation literature, e.g.,
applying rational function representations to reduce fitting error to
measured reflectance [PSS*12] or in augmenting the parametric
space to account for artist-centric control [Bur12; MHH*12]. An-
alytic and parametric models of anisotropic reflectance also have
a rich history in computer graphics, e.g., [PF90; War92; KSK10],
however we focus on isotropic reflectance under complex lighting.

Perhaps the most common parametric reflectance models are mi-
crofacet models, first introduced to the graphics community by Cook
and Torrance [CT82]. These (originally) analytic models incorporate
physically inspired shadowing-masking factors based on statistical
models of microgeometry orientations, similarly admitting follow-
up models exploring the axes of function approximation [Sch94;
LS05] and more accurate shadowing-masking terms [Smi67; Bro80;
APS00; BBS02; BSH12; LKYU12].

Data-driven Models. Gonioreflectometric reflectance measure-
ments [MWL*99] can be used directly as a tabular reflectance
model [MPBM03], leading to significant analyses [Bur12; MHH*12;
BSN16] that expose the diversity of reflectance present in even
the isotropic context. Ngan et al.’s [NDM05] seminal exploration
of the suitability of least-squares parametric fits to the MERL
dataset [MPBM03] set a methodological baseline that spurred
the development of more sophisticated parametric models [AP07;
MHH*12; BSH12; LKYU12; BSN16].

Hybrid microfacet models can combine both analytic and tabu-
lated factors [NDM05; AP07; WZT*08; GHP*08; DHI*15; BSN16],
spanning an interesting gamut of storage/compute/accuracy trade-
offs; here, an additional feature axis relies on the types of operations
required of the reflectance model by a specific rendering engine.
For example, evaluation speed, storage, and compatibility with pre-
filtered lighting are more important in interactive settings than the
ability to perform efficient importance sampling.

Factorized Representations. Factorizing reflectance models
strikes novel trade-offs in the performance/accuracy/operation de-
sign space, as we alluded to above. Kautz and McCool [KM99]
decompose tabulated reflectance matrices according to half-vector
parameterizations, yielding a compact rank-1 factorization using
multi-term sums of outer products. McCool et al. [MAA01] fit a
three-product factored model with two unique factors in log-space,
implicitly enforcing non-negativity and stabilizing the fitting pro-
cess. We also fit in log-space for these reasons, but additionally take
advantage of the fact that log-space lighting and reflectance have
lower-frequency angular variation and thus better suited to compact
frequency-based representation; as such, the parameterization we
propose in this work relies on a simple exponentiation at runtime, is
more memory efficient, stable and easy to fit.

Non-negative matrix factorization is an alternative method to
enforce positivity [LS00] and employed in methods focused on
efficient importance sampling [LRR04]. Extensions of such factor-

ization approaches to anisotropic reflectance also exist (e.g., [SM02;
AS00]) but are outside the scope of our application.

An important distinguishing feature of our method is that – unlike
the entirety of the aforementioned factorized representations – it is
a joint representation of BRDF-integrated incident illumination, not
just of reflectance/BRDF. Thus, many symmetries that are utilized
in BRDF approximation methods are unavailable in our setting.

2.3. Precomputed Radiance Transfer

Many Precomputed Radiance Transfer (PRT) methods [SKS02;
LK03] support relighting with glossy BRDFs, typically by com-
puting (and compressing) 4D transfer operators that map incoming
radiance to reflected radiance. Here, spherical harmonics-based
approaches provide a compact representation for low-frequency,
low-dynamic range environment lights; however, the L2 fit of SH
is famously sensitive to outliers, resulting in ringing artifacts even
when targeting bandlimited HDR signals.

Our method avoids these artifacts by fitting in log-space, resulting
in both quantitative and visual improvements – and, all this, whilst
still benefiting from compact (exponentiated) SH representation. To
our knowledge, we are the first to exploit the property that the log
transform typically reduces the angular frequency of a spherical sig-
nal, allowing for a more accurate representation with band-limited
SH. We also note that our use of logarithm and exponential opera-
tions occur “outside” of the SH-projected space, precluding the need
for expensive runtime SH exponentiation operations [RWS*06]: we
never explicitly evaluate an SH logarithm or SH exponential but,
rather, treat the log-transform implicitly during fitting and evaluate
a exponential point-wise at run time after (standard) SH expansion.

All-frequency PRT [NRH03; LSSS04] represent incoming radi-
ance with tabulated compressed basis-spaces, however, with memory
requirements that use in high-performance settings.

3. Preliminaries

For a fixed view v and normal n, reflected radiance from an environ-
ment light source L is given by the reflection equation

E(v,n,Θ) =
∫

Ω

L(l) f (v,n, l,Θ)⟨l,n⟩dµ(l), (1)

where L(l) is incoming radiance from emitters, f is the BRDF with
parameters Θ (e.g., roughness), and ⟨l,n⟩dµ(l) is the differential
projected solid angle measure. The integral is over the hemisphere
Ω about the normal n.

Although incident radiance is independent of shading point loca-
tion, it is not uncommon to loosen this constraint by interpolating
from several sources, e.g., captured at different locations in space to
enable spatially varying specular reflections.

The computational cost of approximating Equation 1 numerically
depends most significantly on the underlying BRDF f . As such,
an important first goal (G1) in real-time applications is to seek out
representations for reflected radiance E that are efficient to evalu-
ate. However, in many practical scenarios, memory bandwidth and
storage limitations – not just evaluation speed – pose the primary
bottleneck. Another important factor in this cost is the degree to
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which the angular frequency variation of the environmental source
is approximated, typically resulting in supplemental memory/accu-
racy trade-offs. Therefore, a second goal (G2) is to minimize the
memory usage of the targeted representation, e.g., to enable efficient
computation of spatially localized glossy reflections. By adopting
a compact approximation, we reduce memory usage by an order
of magnitude compared to traditional methods (c.f. Section 5), in
turn enabling deployment on lower-end hardware. Although this
introduces minor approximation error, our evaluation shows that
the resulting visual quality remains high, demonstrating that the
trade-off is well-justified.

We will derive a factorized representation (Section 4) for the
reflected radiance E that satisfies these two goals. Beforehand, we
discuss the state-of-the-industry “split sum” shading approach (Sec-
tion 3.2) and its most commonly employed realization, based on the
Cook-Torrance BRDF (which we also use; Section 3.1).

3.1. Cook-Torrance Microfacet Model

Our model will rely on the physically based Cook-Torrance mi-
crofacet BRDF model f [CT82; WMLT07]. We chose this model
due to its ubiquity in interactive applications and to compare to the
predominant split-sum approximation applied in these applications;
note that there is nothing fundamental to our method that precludes
the generalization to other BRDF models.

Concretely, the Cook-Torrance BRDF f is parameterized by a
roughness parameter α and defined as

f (v,n, l,α) = F(F0,v,h)D(h,α)V (v,n, l), (2)

where F is a Fresnel function that accounts for increased reflection
at grazing angles (parameterized by specular color F0), and D is a
normal distribution function that models the fraction of microfacets
that face the viewer. Note that F and D are defined in terms of
the half-vector (or microfacet normal) h instead of the geometric
normal n. The microfacet normal h is the halfway vector between
view v and light l directions, i.e, h = (v+ l)/∥v+ l∥. Finally, the
normalized visibility term V is given by

V (v,n, l) = G(v,n, l)
/
(4⟨n,v⟩⟨n, l⟩) , (3)

where G is a geometric attenuation term accounting for microfacet
shadowing and masking effects [Hei14].

We choose to apply the Schlick Fresnel approximation [Sch94]

F(F0,v,h)≈ F0 +(1−F0)(1−⟨v,h⟩)5 (4)

which decouples the Fresnel term F from the BRDF f . Now, the
reflection equation 1 simplifies to the sum of base reflectance E0
and the Fresnel tail reflectance E1 with

E(v,n,α)≈ F0E0(v,n,α)+(1−F0)E1(v,n,α), (5)

with base reflectance E0 and a simplified BRDF fDV given by

E0(v,n,α) =
∫

Ω

L(l) fDV (v,n, l,α)⟨l,n⟩dµ(l), (6)

and Fresnel tail reflectance E1 given by

E1(v,n,α) =
∫

Ω

L(l) fDV (v,n, l,α)(1−⟨v,h⟩)5⟨l,n⟩dµ(l). (7)

Finally the simplified, or “Fresnel-free”, BRDF fDV is given by

fDV (v,n, l,α) = D(h,α)V (v,n, l). (8)

3.2. “Split-sum" Approximation

Karis [Kar13] and Lazarov [Laz13] independently proposed a
method commonly referred to as the “split sum" approximation.
We derive that here, providing clear meaning to each term and ap-
proximation step.

Their reformulation of Equation (1) splits the original integral
into a product of two integrals, as

E(v,n,Θ) =
∫

Ω

L(l) f (v,n, l,Θ)⟨l,n⟩dµ(l)

=
∫

Ω

L(l)
[

f (v,n, l,Θ)⟨l,n⟩∫
f (v,n, l,Θ)⟨l,n⟩dµ(l)

]
︸ ︷︷ ︸

K(v,n,l,Θ)

dµ(l)×
∫

Ω

f (v,n, l,Θ)⟨l,n⟩dµ(l)

where K in the first integral is interpreted as a (normalized, as per
its denominator) weighting function for the incident radiance L.

By further assuming a normal-aligned view v = n in K, this term
can be approximated as a normalized symmetric function K̂(n, l,Θ)
that admits compact precomputation and efficient lookup at runtime.
Specifically, with Cook-Torrance and Schlick’s approximation, and
with the Θ parameters are α and F0, the v = n assumption allows
F0 to cancel out, leaving K̂ as a function of n, l and α. By fixing
α, the

∫
Ω

L(l)K̂α(n, l)dµ(l) integral can be precomputed for each n
direction and stored in, e.g., a cubemap indexed by n. A common
follow-up optimization is to compute and store several such cube-
maps – for increasing values of α – in a mipmap chain; indeed, as α

increases, the angular frequency of K̂ decreases, requiring a lower
texture/tabulation resolution.

The second integral in Equation 1 can also be similarly split using
Schlick’s approximation into a Fresnel term (as in Equation 5), yield-
ing a two-function factorization. As this term has no dependence on
incident radiance, the resulting integral value can be precomputed
and evaluated in a canonical coordinate frame with the normal ori-
ented along the z-axis, and depending only on v and α. Karis [Kar13]
chooses to precompute and store this term, whereas Lazarov [Laz13]
derives an analytic approximation that is evaluated at runtime.

4. Method

We will directly approximate the Fresnel-decomposed reflected
radiance E ≈ F0E0 +(1−F0)E1 using a separable approximation
and a new angular parameterization. Unlike previous work based on
prefiltered environment maps using circularly symmetric kernels,
we approximate the 4D base reflectance E0 directly.

We begin by considering the base reflectance E0, before treating
the Fresnel tail reflectance E1.

4.1. Base Reflectance

We factorize the 4D base reflectance E0 as

E0(v,n,α)≈ P(π1(v,n))Q(π2(v,n)), (9)
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P only Q only

Figure 2: Isolating factors. We render a sphere (α = 0.25, LITTLE

PARIS EIFFEL TOWER) and isolate the P (order-4 SH) and Q (order-
2 SH) factors, visualizing their contribution by zeroing-out the Q or
P coefficients before exponentiation. In general, P captures higher-
frequency detail than Q, although the effect that increasing the order
of P or Q has on MSE is scene dependent; see Figure 8.

where P and Q are 2D spherical functions parameterized by π1
and π2 respectively. We rely on a novel reflection-half-reflection
parameterization defined by

π1(v,n) = r and π2(v,n) = hr, (10)

where r is the mirror/perfect reflection of v with respect to the
normal n, and hr is the half-vector between r and n, i.e., hr =
(n+ r)/∥n+ r∥. The motivation behind our parameterization is to
enable coupling between the separable terms P and Q using the
half-reflection vector hr, which captures the geometric relationship
between the view direction v, reflection direction r, and surface
normal n. This shared reference preserves directional correlations
important for accurate modeling of glossy reflections.

The main benefit of our separable approximation comes from
dimensionality reduction: we approximate a 4D function E as the
product of two 2D functions P and Q without assuming v = n,
avoiding any systemic error due to erroneous circular symmetry
assumptions (c.f. Section 5).

4.1.1. Modeling Continuous Roughness

We represent the P and Q functions in terms of low-order spherical
harmonic exponentials and encode roughness α via an integrated
directional encoding, i.e., an SH convolution with the von Mises-
Fisher distribution vMF(κ) [VHM*22]:

P(π1(v,n),α) = P(r,α) = exp
(
⟨vMF

(
1
α

)
⊙Y(r),p⟩

)
, and

Q(π2(v,n),α) = Q(hr,α) = exp
(
⟨vMF

(
1
α

)
⊙Y(hr),q⟩

)
,

(11)

where Y(ω) is a vector of spherical harmonics basis functions eval-
uated at direction ω, p and q are vectors of (unknown) spherical
harmonic projection coefficients for the (non-exponentiated) func-
tions P and Q, ⊙ is a component-wise multiplication, and vMF(κ)

Ours Reference

Figure 3: Fresnel tail reflectance. Our Fresnel tail approximation
(Section 4.2) loses some energy at grazing angles compared to
reference but remains visually plausible with MSE of 8.5× 10−6

(PRETVILLE STREET).

is a spherical harmonic approximation to the von Mises Fishes
distribution, where each band l is given by

vMFl(κ) = exp
(
−l(l +1)

2κ

)
. (12)

The motivation for our exponentiation formulation is to linearize
the product P×Q in log-space, allowing us to solve for the unknown
coefficients using simple least-squares while additionally ensuring
positive values during reconstruction. Unlike prior work [RWS*06],
we never explicitly evaluate SH logs or exponentials; the log is
implicit from the solve and the exponential is evaluated point-wise.

Our optimization problem over continuous variables p, q and α is

minimize
p,q

(
log(P(r,α)Q(hr,α))− log(E0(v,n,α))

)2
. (13)

We solve Equation 13 using stochastic linear least-squares by ran-
domly sampling view v and normal n directions, and roughness
values α. Concretely, for each (v,n,α)-sample, the row constraint
using our reflection-half-reflection parametrization is given by[

vMF
(

1
α

)
⊙Y(r) vMF

(
1
α

)
⊙Y(hr)

][
p
q

]
= log(E0(v,n,α)).

(14)
Finally, we remove one degree of freedom by observing that the
constant SH basis function is included twice, leading to an ambigu-
ous sum constraint; to avoid this, we simply omit this DC term
from the Q factor. Runtime reconstruction consists of evaluating
Equations 11 using the precomputed vectors p and q, and at any
continuous roughness value α.

4.2. Fresnel Tail Reflectance

We have derived a separable approximation of base reflectance E0
using spherical harmonic exponentials. We now treat the Fresnel tail
reflectance E1, completing our full factorized model of E.

We approximate the Fresnel tail reflectance E1 by assuming a
constant environment light L approximated by E0,

E1(v,n,α)≈ E0(v,n,α)
∫

Ω

fDV (v,n, l,α)(1−⟨v,h⟩)5⟨l,n⟩dµ(l).
(15)
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We precompute our Fresnel tail integral approximation for efficient
runtime evaluation, as in previous work [Kar13]. Figure 3 compares
our Fresnel tail approximation with the ground truth.

5. Results

We evaluate our method on eight (8) lighting environments [Pol24]
with varying time of day and location. We first compare against split-
sum and ground truth (Section 5.1) before analyzing performance
(Section 5.2) and performing an ablation study (Section 5.3). We
discuss limitations of our method in Section 5.4. In general (i.e.,
in roughly 95% of the scenarios), we obtain higher quality than
the split-sum state-of-the-art, all whilst requiring significantly less
memory and supporting continuous roughness variation.

5.1. Comparisons

All our results use order 4 for P and order 2 for Q for consistency
although, in practice, these parameters can be adapted based on
roughness and environment light bandwidth. We use 64 uniformly
sampled directions for both the view and normal directions, and 4
uniformly distributed roughness samples α in a relaxed range of
α∈ [0.20,1.0] to compute our factorization, for a total of 64×64×4
(v,n,α) samples before solving the linear system in Equation 14.
We compare our method to a mip-chain of prefiltered octahdedral
environment maps with a minimum resolution clamped to 32×32
to avoid visible aliasing artifacts under magnification. Both methods
use an equal number (1024) of directional samples to estimate their
target integrals. Furthermore, we only compute the split-sum mip-
chain for equal roughness range for a fair comparison.

We compare to split-sum approximation and ground truth ref-
erence in Figures 4 and 5 with roughness values α distributed ac-
cording to a perceptual roughness remapping [Bur12]. Our results
compare favorable to split-sum approximations, both quantitatively
and qualitatively. In fact, our method obtains lower MSE in 95% of
our 192 test cases while using over 200× less memory, enabling
alias-free reconstruction of glossy reflections over continuous rough-
ness and angular domains. We compare the MSE error distributions
in Figure 7 and visualize MSE error in Figure 9.

5.2. Performance

We implement our precomputation on the GPU with CUDA and our
runtime in HLSL. We report results on an AMD Ryzen Threadripper
3970X CPU and a NVIDIA RTX A6000 GPU. Our precomputation
and runtime performance are similar to the split-sum method: our
mean precomputation time is 0.328ms compared to 0.536ms for
split-sum, averaged over 1000 runs; the runtime overhead of our
reconstruction is roughly 0.1ms, or 1% of total GPU frame time,
atop the split-sum cost, at a target resolution of 1920×1080.

5.3. Ablation Study

We study the effect that varying the SH degree of P and Q has on the
reconstruction quality (Figure 8): our method consistently converges
as the degree for P and Q increases while the relative importance of
these factors depends on the environment. Note that the MSE is not

guaranteed to be strictly decreasing as the degree increases, e.g., in
BELFAST SUNSET, since log-space optimization is only a proxy for
linear space MSE error.

5.4. Limitations

As shown in Figure 1, our method supports materials with a wide
gamut of continuously varying roughness. The main limitation of
our method is the representation capacity of the factorized spheri-
cal harmonic exponential model when using low degree spherical
harmonics for the factors P and Q. In particular, the low roughness
regime, i.e., α < 0.25 is not well suited for a severely bandlimited
SH approximation as shown in Figure 6. However, increasing the
degrees of P and Q helps our model to converge to the ground
truth reference. Finally, since we perform fitting over a continuous
range of roughness values, the linear least squares optimization
tends to prioritize minimizing larger errors that occur in the low-
roughness regime. Nevertheless, our method compares favorably
to the split-sum approach, which suffers from increasing error at
higher roughness due to its circular symmetry assumption.

6. Conclusion

We introduced a representation for glossy reflections based on
factorized spherical harmonic exponentials. Compared to previous
work, our method increases reflection quality at significantly reduced
memory usage, enabling efficient and alias-free reconstruction over
continuous angular and roughness domains.

Our approach extends the widely used linear SH representation
of diffuse irradiance to support a wider range of glossy materials
[RH02]. This advancement has the potential for immediate practical
application in real-time rendering across various hardware platforms,
offering scalable, spatially localized glossy reflections that are cur-
rently unattainable due to the high memory demands of existing
methods. Moreover, because our representation is differentiable, it
holds promise for computer vision applications, offering an alter-
native to linear spherical harmonics expansions in neural radiance
fields for modeling view-dependent appearance.
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Figure 5: Comparison to split-sum and ground truth. Chrome (top two sub-rows) and glass (bottom two sub-rows) spheres with F0 = 0.04
under various lighting. We compare to split-sum [Kar13] and ground truth with α ∈ [0.25,1.0] and report MSE ratio (bottom of every column;
ours / split-sum, as in Figure 4).
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Figure 8: Effect of SH order on the approximation. We perform an ablation study by varying the SH order of the P and Q features at α = 0.25.
The rows show the effect of increasing order for P and columns for increasing order of for Q. We report MSE numbers and further normalize
these values such that a constant, or degree (0,0) approximation has MSE of 1 for readability. In addition, we visualize the normalized error
as grey bars where height is of the bar is directly related to the normalized error values. We observe that the approximation error decreases as
the SH degree increases, creating a consistent design space for exploring memory vs. quality trade-offs in different applications.
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Figure 9: Error visualization. We visualize the error distribution and compare the MSE error between our method and split-sum method by
rendering a chrome ball (top two rows) and a glass ball with F0 = 0.04 (bottom two rows), both with roughness α = 0.25 under different
environment lights. The view positions are the same as in Figures 4 and 5. Our method compares favorably against split-sum approximation
and avoids the systemic error caused by view assumptions as roughness increases.
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