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Figure 1: Left: HAIRBALL and simplified occluder with 16 triangles (0.0005% of original). Right: BUNNY and simplified
occluder with 64 triangles (1.3% of original).

Abstract

We present a method for extreme occluder simplification. We take a triangle soup as input, and produce a small set
of polygons with closely matching occlusion properties. In contrast to methods that optimize the original geometry,
our algorithm has very few requirements for the input—specifically, the input does not need to be a watertight,
two-manifold mesh. This robustness is achieved by working on a well-behaved, discretized representation of the
input instead of the original, potentially badly structured geometry. We first formulate the algorithm for individual
occluders, and further introduce a hierarchy for handling large, complex scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

Keywords: visibility, occlusion, geometry simplification, rendering

1. Introduction

Real-time rendering of modern, massive scenes requires so-
phisticated occlusion culling methods for avoiding unnec-
essary rendering of geometry that does not affect the final
image. This is typically achieved through a combination of
various techniques.

For static environments, precomputed potentially visible
sets (PVS) [ARB90] and portals [LG95] can be used for de-

† ari.silvennoinen@aalto.fi, hannu@umbrasoftware.com,
slaine@nvidia.com, jlehtinen@nvidia.com

termining objects and regions that are not visible to the cam-
era. A PVS may efficiently model visibility relationships be-
tween large regions of the scene, but in addition to being re-
stricted to static occluders, it is generally overly conservative
compared to exact from-point visibility. Portals are a practi-
cal solution for indoor scenes only, where different regions
are visible to each other through narrow openings.

Modern, dynamic from-point visibility algorithms,
e.g., [AM04, BWPP04], operate on perspective-projected
geometry in image space, and are thus able to capture
the complex and unpredictable occlusion caused by ob-
jects of any scale. Recent algorithms are based on the
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observation that although output resolutions are high and
geometries complex, it often suffices to perform occlusion
computations at a coarse resolution and using approximate
geometry [Val11,Per12]. This brings up the need to perform
visibility-aware geometry simplification.

The number of potentially falsely occluded or unoccluded
pixels depends on the projected size of the simplified oc-
cluder. Therefore, it is desirable to use a different simplifi-
cation depending on the distance between the occluder and
the camera—a coarse approximation with few triangles is
generally sufficient for distant occluders. In addition, the
apparent topology of the occluder may vary with distance,
given that our goal is to bound the error in pixels. For ex-
ample, consider a box with a small hole in one of the faces.
When viewed up close, the hole needs to remain unoccluded,
but at distance we may consider the box to be solid as the
size of the hole shrinks below error threshold. This may al-
low the simplification to retain the occlusion characteristics
with fewer triangles. Our method naturally takes advantage
of this phenomenon through the discretization step, where
voxel resolution determines the allowable error.

To constrain the amount of potential overocclusion, we
want the simplification method to be error-bounded in
the sense that the maximum pointwise distance between
the simplified model and the original model can be con-
trolled. Previous error-sensitive simplification methods (e.g.,
[CVM∗96, Hop96, GH97]) are constrained to operate on the
mesh surface and are therefore not well suited for extreme
simplification. In our method, the maximal simplification er-
ror is governed by the discretization resolution.

Our simplification algorithm is based on the following
two observations. First, every 2D interior slice of a solid
object is a conservatively correct occluder in the sense that
the rays occluded by the slice are a subset of the rays oc-
cluded by the original model. Second, we can form an error-
bounded solid representation even for non-solid input geom-
etry through discretization. This gives us considerable free-
dom in generating extremely simplified occluders by ana-
lyzing slices of the input geometry without sacrificing the
property of error-boundedness. Due to the relaxed require-
ments for the input geometry, the method can be extended
in a straightforward fashion to hierarchical occluder gener-
ation, where multiple objects are simplified together to pro-
duce a common occluder. This decouples the algorithm from
the object partitioning used in the scene.

2. Related Work

Error-sensitive simplification. Cohen et al. [CVM∗96]
present an error-bounded simplification algorithm which ap-
plies iterative mesh simplification operators restricted to an
error-bounding simplification envelope around the original
mesh surface. Law and Tan [LT99] generate virtual oc-
cluders by taking the output of a mesh simplification al-
gorithm such as simplification envelopes and moving edges

which would cause false occlusion as a post-process. How-
ever, both methods require mesh connectivity and they are
not suitable for extreme simplification due to the envelope
constraints.

Quadric error metric based simplification by Garland and
Heckbert [GH97] and its variants [LT00, ZT02], as well as
progressive meshes by Hoppe [Hop96], operate similarly on
the input mesh, iteratively applying simplifications that min-
imize the introduced error in each step. However, the occlu-
sion properties of the simplified mesh may deviate consider-
ably from the input, especially for extremely small triangle
budgets. For example, these methods are eager to cover the
central hole of a fat torus before applying other simplifica-
tions that would make more sense in the occlusion context.

Decoret et al. [DDSD03] build a simplified model by fit-
ting a set of tangent planes to the original mesh and using
texture maps to capture fine geometric and shading detail.
The key difference to our method is that the tangent planes
in their method are restricted to lie near the surface of the
input geometry, whereas we consider all possible planes that
intersect the input geometry.

Virtual occluders. Coorg and Teller [CT97] and Wonka and
Schmalstieg [WS99] use a subset of the input polygons as
occluders. The occluder polygons are chosen based on a
combination of surface area and optionally angle and hence
the occluder polygons are sensitive to the input geometry.

Germs and Jansen [GJ01] build simplified occluders in
2.5D scenes by detecting 2D floor plans and extruding them
vertically. Koltun et al. [KCCo00] use a geometric construc-
tion based on supporting and separating planes to build vir-
tual occluders. However, both of these methods are difficult
to generalise to a 3D setting.

Voxel-based simplification. Nooruddin and Turk [NT03]
use an intermediate voxel representation to perform simpli-
fication operations such as erosion and dilation, potentially
introducing changes in topology, before converting back to
polygonal domain. Similar to us, they take advantage of the
voxel representation to build simplified models with differ-
ent levels of detail. Because the voxel representation is con-
verted back to polygonal domain, they have to rely on a
polygonal simplification method to produce the final output
mesh. The method therefore still operates fundamentally on
the surface of the input mesh, and shares the disadvantages
brought by final mesh simplification step.

The Oxel system [Dar11] voxelizes the scene into an oc-
tree and heuristically classifies each octree node as either
inside or outside. The method then generates occluders by
inserting seed boxes into the inside voxels and iteratively ex-
pands them in axis-aligned directions.

Visibility analysis. Dachsbacher [Dac11] considered the
structure of visible and occluded regions across object sur-
faces under different viewing configurations whereas our
analysis is not restricted to object surfaces.
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Figure 2: The two objects have equal surface area but dif-
ferent occlusion charasteristics.

Figure 3: The orthogonal projection operator Pd : R3 7→ R2

projects the objectO to the image plane im(Pd) in direction
d.

3. Measuring Occlusion

In order to produce efficient occluders through optimization,
we need to quantify occlusion power in a principled manner.
While it is well known that surface area directly measures
the power of an object to block sets of individual rays, we
argue that it does not encode all aspects of a good occluder.
Intuitively, the surface area neglects coherence — clearly, a
good occluder blocks large, contiguous sets of rays. An ex-
treme example is given by cutting holes in a solid surface: in
the limit, where the holes become small and densely packed,
the surface becomes effectively semi-transparent and loses
all its occlusion power, even though the surface area will
have shrunk by some constant factor only. Such a mesh
blocks many individual rays, but almost no beams of finite
radius, and is a useless occluder (cf. Figure 2).

We describe a novel occlusion measure that generalizes
the surface area to account for how effectively the object
blocks beams of rays with varying radii. To maintain scale-
independence, we consider beams of all possible sizes. Effi-
cient computation is enabled by the use of a fast Euclidean
distance transform. Our measure directly corresponds to the
above intuition: comparing two occluders, we favor the one
that has, overall, a more “compact” shape, less holes, and
larger local feature size.

Figure 4: The set Id,r ⊂ Id is obtained by erosion with a
ball Br of radius r.

3.1. Total Occlusion Measure

We begin by considering occlusion caused by the object for
a group of parallel rays of direction d. Let Pd : R3 7→ R2 be
the orthogonal projection operator in direction d and Id =
PdO ⊂ im(Pd) be the orthogonal projection of the object
O (Figure 3), i.e., a binary image that encodes the projected
shape of the object as seen from direction d. The area of the
projection Id corresponds directly to the number of parallel
rays blocked by the object.

To extend the above to larger beams, let Br(x) be a 2D
disk of radius r ≥ 0 and center x ∈ im(Pd). Clearly, the
disk directly corresponds to a cylinder of rays: P−1

d Br(x)
is the set of 3D lines that project to the disk, and the beam
is blocked by the object if and only if the disk Br(x) is fully
contained in Id .

We observe that the number of blocked beams of radius
r is given by the surface area of the set Id,r that remains
after binary erosion of Id by Br (cf. Figure 4). Formally,
Id,r = {x ∈ Id : Br(x) ⊂ Id}, and we denote its area by
A(Id,r).

The larger the area A(Id,r), the more beams are blocked;
further, even infinitesimal holes in the original projection Id
eat away a disk of radius r under erosion, quickly diminish-
ing the occlusion power of a surface with holes and narrow
extremities. Intuitively, assuming a parallel projection, the
surface area measures the how many points the object can
occlude in a given direction, whereas the area A(Id,r) mea-
sures how many balls with radius r the object has potential to
occlude. Note that usual surface area coincides with A(Id,0).

To measure the compound occlusion power over beams of
all sizes, we define the directional occlusion measure M(d)
as the integral of the area of the erosions over all beam radii:

M(d) =
∫ ∞

0
A(Id,r)dr. (1)

Note that this integral never diverges, as the area Id,r is guar-
anteed to decrease with increasing radius. Finally, in order to
account for different directions, we define the total occlusion
measure M for the objectO as the integral over all directions

M =
∫

Ω

M(d)dω. (2)

Preprint, to appear in COMPUTER GRAPHICS Forum .



4 Silvennoinen et al. / Occluder Simplification using Planar Sections

3.2. Fast Occlusion Measure Computation

The directional occlusion measure Md is closely connected
to the Euclidean distance transform [RP66]. The Euclidean
distance transform D(x) at a point x ∈ Id gives the radius
r of the maximal disk Br(x) such that Br(x) ⊂ Id , i.e., it
returns the distance to the closest point on the boundary.
Now, we can write the directional occlusion measure M(d)
in terms of the Euclidean distance transform D:

M(d) =
∫ ∞

0
A(Id,r)dr =

∫
Id

D(x)dA, (3)

where dA is the area measure on the projection plane. This
can be seen by considering the 3D space im(Pd)×R and
rewriting Equation (1) as

M(d) =
∫

im(Pd)

∫ ∞
r=0

1Id,r dAdr, (4)

where we’ve merely expanded the definition of the surface
area of the set Id,r by writing it as the area integral over
its indicator function. For each x in the original projection
Id , the indicator function remains non-zero with increasing
r until the point is “eaten away” by erosion. Clearly, this hap-
pens when r = D(x), i.e., when the erosion frontier reaches
the point from the closest boundary point. The right-hand
side of Equation (3) immediately follows.

Equation (3) is key to efficient evaluation of the direc-
tional occlusion measure since it allows us to compute M(d)
in a single pass instead of repeatedly evaluating A(Id,r) for
different radii. In practice, we compute its value by raster-
izing the projection Id onto a discrete grid. We then com-
pute the discrete Euclidean distance transform of the re-
sulting binary image using a parallel jump flood fill algo-
rithm [RT06], and approximate the integral using a Riemann
sum. The error introduced by the discrete pixel grid is con-
trolled by rasterization resolution. The outer integral over
directions (Equation 2) that yields the total occlusion mea-
sure M is evaluated by repeating the process for N uniformly
distributed directions.

4. Algorithm

In this section, we describe the operation of our occluder
simplification algorithm. When bounding the pixel error
caused by using a simplified occluder at various rendering
distances, we need multiple simplified versions with differ-
ent Euclidean error bounds. Each of these is generated sep-
arately, and in the remainder of this section we discuss the
construction of a single level of detail.

Overview. We start by voxelizing the input mesh using
a voxel resolution appropriate for the desired error bound
(Section 4.1). The binary voxel data is then immediately
converted to an intermediate voxel mesh that is always closed
and manifold. This step is crucial, because voxelization
merges the input geometry, regardless of its connectivity,
into a topologically simple representation that is amenable

Figure 5: Scale-sensitive discretization illustrated in 2D.
Left: In fine scale, corresponding to using the occluder near
the camera, the input object is treated as open, allowing vis-
ibility between its interior and exterior. A candidate slice for
the simplified occluder (dashed line) correctly contains only
the boundary of the object. Right: On a coarser scale, appli-
cable for using the occluder at a farther distance, flood fill
marks the interior voxel as inside, permitting the production
of an occluder candidate slice that spans the entire object.

for further processing. Specifically, the voxel mesh is a well-
behaved, error-bounded approximation of the original geom-
etry: the grid resolution determines a strict bound on the
maximal (Hausdorff) distance between the input geometry
and the voxel mesh, meaning that the occlusion properties of
the voxel mesh are guaranteed to resemble that of the input
within the discretization error. Furthermore, the discretiza-
tion resolution determines a natural “feature size” such that
smaller holes are automatically filled, allowing simpler oc-
cluders while remaining error-bounded. Figure 5 illustrates
the effect of resolution-dependent discretization and the re-
sulting interpretation of the input geometry.

After constructing the voxel mesh, we then generate a set
of 2D slices which serve as an approximation of the origi-
nal model (Section 4.2). The slices are then converted into
a simplified polygon soup (Sections 4.3 and 4.4) and used
as input to a greedy optimization algorithm to generate the
final occluder (Section 4.5).

4.1. Voxelization and Remeshing

We begin by transforming the input triangle soup into a voxel
representation, using a voxel resolution that is appropriate
for the allowed Euclidean error in the simplification. Ini-
tially, all voxels are labeled OUTSIDE. For each input tri-
angle, we mark all voxels touched by the triangle as INSIDE

using an exact triangle vs. AABB test. The input geometry
is not used after this step.

After processing the input triangles, we partition the re-
maining OUTSIDE voxels into 6-connected components us-
ing flood fills. Voxels in the components that do not con-
nect to the boundary of the voxel grid are marked INSIDE,
turning closed boundaries—as interpreted in the given voxel
resolution—into solid objects.

The final step is to generate the voxel mesh by iterating
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over all voxels, and adding two triangles for each face be-
tween an INSIDE and an OUTSIDE voxel, orienting the trian-
gles consistently towards the OUTSIDE voxel. This results in
a closed, 2-manifold triangle mesh.

4.2. Interior Sampling

To accelerate the construction of occluder polygon candi-
dates, we employ hardware rasterization. Given a direction
d, we sample the depth interval of the object AABB with a
set of evenly distributed planes. For each depth slice, we use
GPU to rasterize the voxel mesh using an orthogonal projec-
tion where the near clip plane is set at the slicing depth, and
the far clip plane is behind the voxel mesh. By setting the
stencil buffer to increment by one for back faces and decre-
ment by one for front faces of the near-clipped mesh, we
obtain an image of the slice in the stencil buffer (Figure 6a).
The rasterization resolution is chosen based on the voxel res-
olution, so that each voxel in the discretized input will cover
at least one pixel.

In order to generate a set of 2D slices capturing the occlu-
sion properties of the original mesh as closely as possible,
we discretize the search space by dividing the sample direc-
tions and depths into bins. We then generate a single repre-
sentative 2D slice for each bin by exhaustively sampling the
corresponding direction and depth ranges on the GPU and
pick the slice with maximal surface area.

4.3. Edge Loop Extraction and Simplification

From the slice bitmap image (Figure 6a), we construct edge
loops out of edges placed at the boundaries between covered
and uncovered pixels. Finding the edge loops can be done
simply by stepping along the edges and closing the loops
when encountering the starting point, until all edges have
been processed (Figure 6b). The resulting loops are non-
intersecting but may meet at pixel corners, which has to be
taken into account in the subsequent processing steps.

In order to convert the set of edge loops into simple poly-
gons, we connect each loop that represents a hole in the slice
to the enclosing boundary loop (Figure 6c), thereby convert-
ing it into a part of the boundary. Note that even after all hole
loops have been eliminated, a single slice may still produce
multiple polygons as a result if the cross-section of the input
contains disconnected parts.

As the edge loops were constructed from a raster image,
they typically contain many redundant edges. As a final step,
we perform error-bounded edge loop simplification using the
Ramer-Douglas-Peucker algorithm [Ram72, DP11] for each
edge loop (Figure 6d). This algorithm takes the maximum
allowed deviation of the simplified edge loop as an input,
and we set this to match the voxel resolution.

4.4. Polygon Simplification Chain Generation

The number of triangles Ti in each simple polygon Pi pro-
duced by the previous step can easily exceed the triangle
budget, ruling out the simplest optimization algorithm where
we would incrementally add new candidate polygons to the
occluder as long as we have room in the triangle budget. To
solve this issue, we build a progressive simplification chain
for each candidate polygon and optimize over the simplified
versions instead of the entire polygons. This approach allows
for extreme simplification and produces balanced occluder
models even with very low triangle count.

For each candidate polygon Pi with Ti triangles, we build
a progressive simplification chain (PTi

i ,PTi−1
i , ...,P1

i ), where
the superscripts denotes the number of triangles, using a
greedy vertex collapse algorithm. We start with the complete
polygon PTi

i and iteratively collapse vertices until we have a
polygon with only a single triangle P1

i . During each itera-
tion, we remove the vertex vk such that the area of the tri-
angle vk−1,vk,vk+i is minimal and the resulting polygon is
fully contained in the interior of the original candidate poly-
gon. Finally, each resulting polygon P j

i , where j = 1, ...,Ti
is triangulated.

4.5. Occluder Optimization

The remaining task in generating the simplified occluder is
choosing how many triangles of each candidate polygon to
include in the result. Formally, given n candidate polygons
Pi, i = 1, ...n and a budget of B triangles, our goal is to
find a cut across the simplification chains C = (c1,c2, ...,cn),
where 0 ≤ ci ≤ Ti, i = 1, ...,n such that the set of poly-
gons P = {Pc1

1 ,Pc1
2 , ...,Pcn

n } maximizes occlusion subject to
∑

n
i=r ci ≤ B.

An exhaustive search would be prohibitively expensive,
so we use a greedy approach instead. We start with an empty
cut C0 = (0,0, ...,0) and continue by adding one polygon
PTi

i at a time until the cut is α-complete, i.e., adding new
polygons would increase the occlusion measure by less than
α percent. During each step K we evaluate all possible cuts
Ck+1 obtained from Ck by adding a new polygon PTi

i and
choose the one which maximizes the total occlusion measure
for the polygon soup corresponding to the cut Ck+1.

The resulting occluder is complete but it might still exceed
the triangle budget. As a final step, we simplify the cut until
the budget constraint is satisfied. We start with the cut ob-
tained by the greedy algorithm and proceed by removing one
triangle at a time until the budget is met. During each step
k, we evaluate all possible cuts Ck+1 obtained by travers-
ing a single step in the simplification chain of every poly-
gon, i.e., we consider cuts of the form Ck− (1,0, ...,0),Ck−
(0,1,0, ...,0), ...,Ck− (0, ...,0,1) and choose the one which
maximizes the surface area of Ck+1.
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(a) Rasterized depth slice (b) Extracted edge loops (c) Simplified topology (d) Final slice polygon

Figure 6: Occluder candidate generation. (a) Result of interior sampling is a bitmap of the rasterized voxel mesh at one
depth slice. (b) Edge loops are extracted by connecting boundary edges of the rasterized pixels. (c) Topology is simplified by
connecting the edge loops of holes to the enclosing boundary loops. (d) The remaining edge loops are then simplified using
Ramer-Douglas-Peucker algorithm [Ram72, DP11] with user-specified error tolerance.

5. Hierarchical Occluders

For the occluder generation algorithm to be useful in com-
plex settings, we generalize it from individual objects to hi-
erarchies. Fortunately, this turns out to be straightforward.
For a given scene, we build a bounding volume hierar-
chy (BVH) and apply our algorithm independently for each
node. In order to smoothen out the transitions between dif-
ferent levels of the hierarchy, we apply a single dilation step,
i.e., marking every OUTSIDE voxel as INSIDE if it has any
INSIDE neighbors during the voxelization. This has the ef-
fect of gluing neighbors together. Note that the error in this
step remains bounded.

We use the hierarchy at runtime to select a suitable set of
occluder nodes based on the camera position and viewing
parameters. These hierarchical occluders are subsequently
used to perform occlusion culling from the camera (Figure
10), using axis-aligned bounding box of each object as a
testing primitive. The testing primitives are then expanded
based on the screen space error bounds and taking perspec-
tive projection into account in order to guarantee conserva-
tive culling results when possible, i.e., in cases where the
discretization step has not changed the apparent topology.

6. Results

Figure 7 shows the results of our algorithm from multiple
different angles in five different test scenes. Each occluder
was computed with a budget of 64 triangles. The images are
color-coded in order to demonstrate the difference between
the original mesh and the generated occluder.

We show an example of a particularly difficult input scene
in Figure 8.

To demonstrate the effect of the voxel grid resolution on
the resulting occluder, Figure 9 shows a sequence of occlud-
ers built from the DRAGON scene.

Figure 10 and the accompanying video demonstrate the
hierarchical variant of the algorithm. The upper left corner in
the video displays the percentage of occluder triangles used
in comparison to the amount of actual display geometry.

Input Occluder with 64 triangles Comparison

Figure 8: An example of particularly difficult input, e.g.,
a complex tree without leaves. The occluder was computed
using a voxel resolution of 2563.

16x16x16 32x32x32 64x64x64 128x128x128

22 triangles 41 triangles 64 triangles 97 triangles

Figure 9: The effect of scale-sensitive discretization on the
resulting occluder models in the DRAGON-scene.

6.1. Occlusion Accuracy

We numerically evaluate the quality of our occluders by
sampling their occlusion performance over a set of direc-
tions using random occludees. For each direction, we raster-
ize both the occluder and 32 000 axis aligned quads chosen
at random over the screen bounding box of the object. We
classify the pixels of each quad as follows: 1) When all pix-
els in a quad are covered by both the simplified occluder and
the original mesh, the pixels are counted as true negatives
(Nt ). 2) If the quad is completely covered by the original
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Figure 7: Results from our test scenes. The silhouette images are colour-coded for visual comparison. The original geometry is
rendered in black, the intersection of the original geometry and the generated occluder is yellow. Over-occluded parts are coded
in blue.

model but some pixels are not covered by the occluder, all
pixels are classified as false positives (Pf ). 3) Finally, if the
quad is entirely covered by the occluder, but some pixels are
not covered by the original mesh, we classify the erroneous
pixels as false negatives (N f ). Note that false positives cause
additional work but no image artifacts, and false negatives
cause erroneous renderings.

We can now compute the precision P = Nt/(Nt + N f )
and recall R = Nt/(Nt +Pf ). High precision means that the
amount of visual artifacts due to false occlusion is low, and
high recall means that the simplified occluder occludes al-
most all the same quads as the original mesh, i.e., the amount
of unnecessary rendering work due to lost occlusion is small.

To verify that our total occlusion measure leads to im-
proved results over using the surface area, Figure 11 com-
pares recall distributions over five scenes and over 256 ran-
domly chosen view directions. In both cases, occluders are
built using our algorithm; the only difference is the mea-
sure used. Occluders built using surface area have distri-
butions that are clearly heavier at low recall values in all
scenes, meaning they generate larger number of false posi-
tives. This conforms to intuition: surface area does not pe-
nalize holes, which leads to poor occluders (Figure 12). The
graphs demonstrate that the proposed total occlusion mea-
sure behaves consistently better.

The precision distributions (not shown) are almost iden-
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(a) Original scene (b) Hierarchical occluders (d) A bird’s eye view of the scene

Figure 10: Hierarchical occluders. (a) Camera view. The objects in the scene are color coded to show object granularity. (b)
At runtime we choose a tree cut of occluder hierarchy based on viewing parameters. (c) The occluders are used to perform
occlusion culling. Red objects are hidden from the camera’s point of view.
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Figure 11: Distribution of recall over 256 randomly oriented views, comparing occluders built using the total occlusion measure
(OM) and surface area (SA). The recall value for each view is computed by computing occlusion over 32 000 random screen-
aligned quads. Cf. Section 6.1.

tical between surface area and the proposed occlusion mea-
sure. The values range between 97− 99%, meaning the oc-
cluders do not significantly over-occlude in comparison to
the original model. This is to be expected, since the dis-
cretization error is bounded.

6.2. Overdraw and Rasterization Performance

Our algorithm optimizes for low triangle count, but by its
nature, generates occluders with potentially significant over-
draw. We analyze the significance of this design choice by
computing the rasterization cost of both the original mesh
and the simplified occluders using a state-of-the-art hierar-
chical software rasterizer [Umb13]. We find an almost per-
fect linear correlation between rasterization time and triangle
count, i.e., the speedup from using our occluders is directly
predicted by the ratio of the triangle count to the original
model. This demonstrates that overdraw does not cause bot-
tlenecks.

Depending on the scene, the rasterization of the original,
detailed meshes takes 5-150ms. This is unacceptable for a
real-time occlusion culling system. Our simplified occluders
are faster to render in direct proportion to triangle count, one

to two orders of magnitude in our test cases. This brings ras-
terization cost down to the submillisecond range, which is
necessary for real-time applications.

6.3. Comparison to Other Methods

We compare our method against Oxel [Dar11] and the
Autodesk R© 3ds Max ProOptimizer R© (Max) in five scenes
(Figure 14). Each method is given the same triangle bud-
get and we compute the precision and recall of the result-
ing occluder models (Table 1). We use a voxel resolution of
64×64×64 for both Oxel and our method.

Our method compares favourably against Oxel and Max.
Oxel demonstrates good precision but suffers from over-
all poor recall. Max performs inconsistently, having a
slightly better recall compared to our method in BUNNY and
DRAGON scenes, albeit at the cost of lower precision, but
fails to produce usable results in MACHINE and BUDDHA

scenes.

Oxel can produce good results in the special case of axis-
aligned input but has difficulties in more general cases (Fig-
ure 13). Furthermore, no guarantees are given that the re-
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Input SA OM

Figure 12: The difference between surface area (SA) and
total occlusion measure (OM). Surface area can lead to sub-
optimal occluders with visible holes (Middle) compared to
total occlusion measure (Right).

Input model Our method Oxel

28 triangles 6 triangles 509 triangles

Figure 13: The Oxel method [Dar11] has difficulties with
non-axis aligned input geometry. In comparison, our method
does not make any assumptions on the orientation of the in-
put geometry.

sulting occluder has fewer triangles than the input triangle
soup.

7. Conclusions

We have described a technique for error-bounded occluder
simplification with few requirements on input geometry. Our
algorithm is capable of extreme simplification due to its vol-
umetric nature, and is driven by expected screen-space error.
In addition, we extended the occluder generation algorithm
for large scenes using a hierarchy. In particular, the camera
is free to move inside the simplified hierarchical model. This
would be impossible using a single-level algorithm.

We believe that our resilience to bad topology and support
for large scenes (as opposed to single objects) are the keys
for real-world applicability.

Scene Triangles Budget Time Precision Recall
Our Oxel Max Our Oxel Max

BUNNY 4968 53 18s 99.9% 100% 99.7% 83.5% 50.5% 86.6%

DRAGON 871306 36 11s 99.9% 99.9% 97.2% 47.8% 16.7% 48.5%

TERRAIN 60160 23 11s 99.9% 100% 99.8% 82.3% 29.3% 73.6%

MACHINE 394452 36 8s 99.8% 100% 100% 56.4% 12.1% 0.5%

BUDDHA 1087474 30 10s 99.9% 100% 100% 60.2% 17.4% 3.8%

Table 1: Details and color-coded precision/recall measure-
ments from our test scenes. Time corresponds to the total
computation time for our method. Highest precision/recall
values are indicated in green and lowest are indicated in red.
Cf. Section 6.1.

In the future, we are interested in investigating weighted
occlusion measures that take the object distribution in the
scene as a prior. In addition, we would like to apply the oc-
clusion measure to other problem domains, such as hierarchy
construction in ray tracing.
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