
Occluder Simplification  
using Planar Sections

Ari Silvennoinen Hannu Saransaari Samuli Laine Jaakko Lehtinen
Remedy Entertainment 

Aalto University
Umbra Software NVIDIA NVIDIA 

Aalto University

Coping with Scene Complexity

We want to render more than we can afford

Coping with Scene Complexity

We want to render more than we can afford

Need to use visibility culling and level-of-detail techniques

Visibility Culling

Visibility Culling

Visibility Culling

Visibility Culling

Visibility algorithm needs to be faster than processing the whole scene

Problem

Visibility algorithm needs to be faster than processing the whole scene

Need simplified occluders; currently mostly manual work

Problem

Goal

Automatic occluder simplification

Given a display mesh and a budget of N triangles, generate simplified
model with similar occlusion characteristics

Goal

Automatic occluder simplification

Given a display mesh and a budget of N triangles, generate simplified
model with similar occlusion characteristics

Works with general 3D triangle soups

Previous Work

Most traditional rendering algorithms fire rays through each pixel
—path tracing, etc.
—determine intensity by averaging many samples (MC sampling)
—sample all possible paths light can take from source to sensor

Not useful for finding derivatives

Special cases for occlusion
— Subset of the input [Coorg and Teller 1997], [Wonka and Schmalstieg1999]
— 2.5D urban scenes [Germs and Jensen 2001]
— Valid from small region only (e.g., hoops) [Brunet 2001]
— Simple, axis-aligned 3D scenes [Darnell 2011]

Difficult to generalize

Previous Work

Most traditional rendering algorithms fire rays through each pixel
—path tracing, etc.
—determine intensity by averaging many samples (MC sampling)
—sample all possible paths light can take from source to sensor

Not useful for finding derivatives

General mesh simplification methods
— Simplification envelopes [Cohen 1996]
— Quadratic error metrics [Garland and Heckbert 1997]
— Voxel-based [Nooruddin and Turk 2003]
— Textured tangent planes [Decoret 2003]

Focus on visual similarity which is not the same as occlusion

Main Idea: Focus on Occlusion

Main Idea: Focus on Occlusion
✗

Main Idea: Focus on Occlusion
✗

Main Idea: Focus on Occlusion
✔

Main Idea: Focus on Occlusion

✗

Interior slice is a
conservative occluder

Main Idea: Focus on Occlusion

✗

Line soup and polygon
have similar occlusion
characteristics

Main Idea: Focus on Occlusion

Line soup and polygon
have similar occlusion
characteristics

Main Idea: Focus on Occlusion

Focusing on occlusion
gives us more freedom

Main Idea: Focus on Occlusion

Algorith Sketch

1. Cut the model using a large number of planes
2. Assemble the cuts such they satisfy our budget 
 and maximise occlusion similarity

How to Quantify Occlusion?

Surface Area?

<

Surface Area?

=

Topological Erosion

Why is a sphere a better occluder than a torus?

=

Topological Erosion

Why is a sphere a better occluder than a torus?

Topological Erosion

Why is a sphere a better occluder than a torus?

Topological Erosion

Why is a sphere a better occluder than a torus?

Topological Erosion

Why is a sphere a better occluder than a torus?

Topological Erosion

<

Why is a sphere a better occluder than a torus?

Measuring Occlusion

Surface area after erosion

Measuring Occlusion

Z

⌦

1Z

0

Surface area after erosion drd!

1. Voxelize the input model and build a closed 
 model with a well defined interior
2. Generate a large number of planar polygons 
 by sampling the interior of the voxel model
3. Assemble the polygons such that they satisfy 
 our budget and maximise total occlusion measure

Algorithm Outline

1. Voxelize the input model and build a closed 
 model with a well defined interior
2. Generate a large number of planar polygons 
 by sampling the interior of the voxel model
3. Assemble the polygons such that they satisfy 
 our budget and maximise total occlusion measure

Algorithm Outline

1. Voxelize the input model and build a closed 
 model with a well defined interior
2. Generate a large number of planar polygons 
 by sampling the interior of the voxel model
3. Assemble the polygons such that they satisfy 
 our budget and maximise total occlusion measure

Algorithm Outline

1. Voxelization

2. Interior Sampling

2. Interior Sampling

Interior slice

2. Interior Sampling

Rasterized interior slice Polygons

3. Occluder Assembly

3. Occluder Assembly

Use a greedy method to pick one polygon at a time

Evaluate total occlusion measure for each possible choice and choose
the maximal one

Iterate the process until the occluder is complete

The resulting occluder might still exceed our triangle budget

Remove triangles one-by-one until we reach our budget

3. Occluder Assembly

Bunny 5K

Buddha

Input 1087474 tris Output 64 tris

Machine

Input 394452 tris Output 64 tris

Dragon

Input 871306 tris Output 64 tris

Surface Area vs. Occlusion Measure

Occlusion MeasureSurface AreaInput

Comparison against Oxel

Oxel 509 trisOurs 6 trisInput 28 tris
[Darnell 2011]

Difficult Input

ComparisonOurs 64 trisInput 100K tris

Straightforward extension to handle large scenes

Build a BVH over the input geometry and apply the algorithm to each
node separately

Hierarchical extension

Conclusions and Future Work

Principled way to quantify occlusion
—Fast evaluation based on Euclidean Distance Transform
Scalable method for occluder simplification
—Works with general triangle soups

Conclusions and Future Work

Principled way to quantify occlusion
—Fast evaluation based on Euclidean Distance Transform
Scalable method for occluder simplification
—Works with general triangle soups
Could we apply the occlusion measure / simplified occluders to
other problems?
—Light ray connections in path tracing? BVH build heuristics?

Thank You!
Acknowledgments
Anonymous reviewers for constructive and thorough feedback

Bounded Approximation Error

Sources of error
—Voxelization error (bounded by voxel size)
—Rasterization error (bounded by raster resolution)
—Edge loop simplification error (bounded by tolerance)
Single user parameter: Voxel resolution
—Raster resolution and edge loop simplification set accordingly

Effect of Scale-Sensitive Discretization

16x16x16 32x32x32 64x64x64 128x128x128

Comparison to Other Methods

Directional occlusion is connected to Euclidean Distance Transform

Gives a practical way to calculate the occlusion measure

Fast Evaluation of the Occlusion Measure

Hierarchical extension

Input Hierarchical Occluder

