
Real-time Global Illumination by Precomputed Local Reconstruction
from Sparse Radiance Probes

ARI SILVENNOINEN, Aalto University, Remedy Entertainment
JAAKKO LEHTINEN, Aalto University, NVIDIA

a) Our result (fully dynamic lights), 3.90 ms b) Path traced lightmaps

Fig. 1. a) Real-time global illumination rendered using our method in 3.9ms with fully dynamic lights, cameras and diffuse surface materials.

b) Ground truth (converged path tracing).

We present a direct-to-indirect transport technique that enables accurate real-

time rendering of indirect illumination in mostly static scenes of complexity

on par with modern games while supporting fully dynamic lights, cameras

and diffuse surface materials. Our key contribution is an algorithm for

reconstructing the incident radiance field from a sparse set of local samples —

radiance probes — by incorporating mutual visibility into the reconstruction

filter. To compute global illumination, we factorize the direct-to-indirect

transport operator into global and local parts, sample the global transport

with sparse radiance probes at real-time, and use the sampled radiance field

as input to our precomputed local reconstruction operator to obtain indirect

radiance. In contrast to previous methods aiming to encode the global direct-

to-indirect transport operator, our precomputed data is local in the sense that

it needs no long-range interactions between probes and receivers, and every

receiver depends only on a small, constant number of nearby radiance probes,

aiding compression, storage, and iterative workflows. While not as accurate,

we demonstrate that our method can also be used for rendering indirect

illumination on glossy surfaces, and approximating global illumination in

scenes with large-scale dynamic geometry.
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1 INTRODUCTION
Indirect (global) illumination is widely acknowledged to be a key

factor in perceived image realism. Over the past decade, the film

industry has largely switched from more or less phenomenological

models to physically-based rendering techniques [Christensen and

Jarosz 2016] as they offer realistic, predictable, and controllable

results. Yet, real-time rendering of accurate indirect lighting remains

a challenge, as the necessary integration over the space of all light

paths remains too costly to be performed for every pixel. The issues

are only aggravated by high-DPI screens, stereo rendering, and the

high frame rate requirements of VR headsets. Consequently, typical

applications today do not support detailed indirect illumination

with local, dynamic light sources, and instead mostly resort to static

pre-computation or a limited form of dynamic illumination through

precomputed radiance transfer [Sloan et al. 2002].

We present a technique that enables accurate real-time rendering

of indirect diffuse illumination in mostly static scenes of complexity

on par with modern games with fully dynamic lights, cameras and

diffuse and emissive surface materials. Our key contribution is an

algorithm for faithfully interpolating incident radiance captured at

a sparse set of low-frequency “radiance probes” to nearby receiver

points. While much previous work has built on the same basic ideas,

our method features little inappropriate light leaking thanks due to

our novel formulation of the interpolation at the surfaces seen by

both the probes and the receiver points, not only spatially between

the samples. Using our interpolator, we formulate a novel direct-to-

indirect precomputed transport technique that yields results that

compare favorably to path traced references with probe sets that

are extremely sparse in comparison to previous methods at similar

quality. We study the properties of our reconstruction using tools

for analyzing light field sampling and reconstruction; this allows

reasoning about the role of spatial sampling densities and angular

bandwidths.
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2 RELATED WORK
Real-time global illumination methods draw efficiency from two

main sources: 1) geometric approximations that enable faster inte-

gration, e.g., using point-based models or voxels instead of accurate

geometry [Christensen 2008; Crassin et al. 2011; Ritschel et al. 2009],

and 2) interpolating illumination from sparse sample sets, or sam-

pling it densely but poorly and attempting to remove noise after

the fact using sophisticated non-linear filters (e.g., [Dammertz et al.

2010; Kontkanen et al. 2004]). Our method makes use of exact ge-

ometry and sparse samplings.

Interpolation methods. Our work most naturally relates to sparse

interpolation techniques. E.g. Ward [1992], Křivánek et al. [2005]

interpolated irradiance and bandlimited radiance, respectively, from

point sets whose local density is driven by distance to close-by

geometry. Schwarzhaupt et al. [2012] introduced a second order,

occlusion-aware error metric for irradiance caching. Lehtinen et al.

[2008] perform similar interpolation, but address changing spatial

frequency needs with a hierarchy of grids. We share these methods’

fundamental idea — computing illumination sparsely and interpo-

lating — but address their greatest shortcoming: light leaks due to

interpolation weights that do not respect visibility. Our algorithm

is able to faithfully interpolate radiance from much sparser cache

point sets.

Local-global separation. Arikan et. al [2005] interpolate radiance

represented as spherical harmonic expansions from sparse samples,

and model the shadowing effect of local occluders by approximate

visibility. In a sense, we share many of the same goals. Our technique

accounts for visibility in a more precise manner, and consequently

yields superior results as the number of probes decreases.

Precomputed light transport. Precomputed radiance transfermeth-

ods [Sloan et al. 2002], including “direct-to-indirect” techniques

[Hašan et al. 2006], precompute linear operators that map emitted

or direct illumination functions into indirect radiance or irradiance

sampled over the scene surfaces. We use our interpolation method to

formulate a novel direct-to-indirect technique, where direct illumi-

nation is captured at runtime at a sparse set of probes, and mapped

to the incident radiance of densely sampled nearby receiver points

through precomputed local interpolation operators. On a high level,

our algorithm is precisely equivalent to earlier direct-to-indirect

methods [Hašan et al. 2006; Kontkanen et al. 2006; Lehtinen et al.

2008; Martin 2010], but one with a transport operator explicitly fac-

torized into global and local components. Both operators are sparse:

there is a relatively small number of probes only, and each receiver

point only needs to consult the radiance from a small subset of

nearby probes. This is in contrast to earlier direct-to-indirect tech-

niques that globally link senders and receivers together. The locality,

which aids compression and streaming, furthermore makes it simple

for us to support indirect illumination effects from limited forms of

dynamic blockers. We make use of clustered principal component

analysis for compression [Sloan et al. 2003].

Light Field Probes. Light field probes are spatial samples of the

angular variation in the light field [Buehler et al. 2001]. They may be

represented in various forms, e.g., cubemaps [Hooker 2016;McGuire

et al. 2017] or spherical harmonics expansions [Ramamoorthi and

Hanrahan 2001], which is also our choice. Hooker [2016] uses a

sparse set of cube maps for accelerating final gathering in a pre-

computation program. Like us, they make use of precise visibility

between probes and query points; in contrast, they consult probes

near the secondary hits of the final gather rays whereas we query the

probes near the rays’ origins. In our direct-to-indirect setting, their

approach would be prohibitively expensive, as it would link receiver

points to potentially all probes in a scene. McGuire et al. [2017]

performed ray tracing in cube maps with depth information; they

also perform spatial interpolation, but with weighting that leads

to inaccurate reconstruction with sparse samplings. In contrast to

these methods, we sample the light field in an angle-bandlimited

format using spherical harmonics. We reason about why and when

such a representation is still sufficient for faithful reconstruction of

irradiance below.

3 LOCAL TRANSPORT OPERATOR
Section 3.1 introduces our premise, interpolation of radiance from

sparse samples of the directional radiance field. Section 3.2 presents

a novel interpolation method that accounts for precise visibility and

thus significantly reduces the signature “light leaking” of interpola-

tion techniques. We also analyze the effect of angular bandwidth

stored at the radiance samples. Section 3.3 builds a local precom-

puted radiance transfer method using the novel interpolation oper-

ator. Finally, Section 3.4 studies the properties of the interpolator

by light field analysis techniques. Section 4 then describes a full

working direct-to-indirect transport algorithm.

Assumptions. We assume throughout that the radiance field leav-

ing the scene surfaces is diffuse; however, our framework supports

glossy BRDFs for the final bounce towards the viewer. This is a com-

mon approximation in real-time global illumination techniques. We

further assume that the scene is mostly static, but do offer support

for approximate dynamic occluders. In addition, dynamic objects

can receive indirect illumination by combining our method with

(ir)radiance volumes [Greger et al. 1998].

a) Direction mismatch b) Visibility mismatch c) Our approach

Fig. 2. Issues and solutions for interpolation from a sparse set of

radiance probes. a) Using the same constant direction ω when interpo-

lating radiance is incorrect. b) Reprojecting the point Γ(x,ω) seen by

the receiver x in the direction ω to the probes improves interpolation

significantly. Still, interpolating radiance in directions where Γ cannot

be seen by some probes leads to incorrect results. c) Our reprojected in-

terpolation with added visibility weighting enables much more faithful

reconstruction.
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3.1 Overview
Our goal is to compute indirect illumination at a dense set of receiver

points, which are either surface points or points in a radiance volume.

This requires a dense sampling of the incident radiance field L(x,ω)
over directions ω for all receiver points x. As it continues to be too

expensive to perform a real-time dense angular radiance sampling,

e.g., by rendering cube maps or tracing hundreds of rays per receiver,

we aim to instead reconstruct the angular incident radiance function

at the receivers by interpolation from a much sparser set of radiance

observations Li (ω) := L(pi ,ω) (radiance probes), where each probe

captures the angular variation as seen from the probe position pi
(Figure 2).

Our goal is shared by much previous work, e.g., [Křivánek et al.

2005; Ward et al. 1988]. These reconstructions typically take spatial

averages of the probes’ radiance (or irradiance) by

L(x,ω) ≈
∑
i wi (x)L(pi ,ω)∑

k wk (x)
, (1)

wherewi (x) are spatial interpolation weights that are functions of

the positions of the probe and the receiver, and potentially differ-

ences in their surface normals (Figure 2a). Some methods also make

use of the spatial gradient ∇xL [Ward and Heckbert 1992].

We observe two key issues in the reconstruction performed ac-

cording to Equation (1). First, interpolating the radiance using the

same fixed direction ω for all probes is incorrect, because these

directions do not generally point towards the surface point Γ(x,ω)
seen by the receiver x in the directionω (Figure 2a). Reprojecting the

directions appropriately, i.e., consulting the probes’ radiance in the

direction of the point Γ(x,ω) seen by the receiver in the direction ω,
remedies the issue; this solution (“sheared reconstruction”) has been

employed in several light field reconstruction techniques [Buehler

et al. 2001; Chai et al. 2000; Egan et al. 2011, 2009; Gortler et al. 1996;

Lehtinen et al. 2011]. Second, local visibility easily causes erroneous

interpolation of radiance in directions that are not mutually visible

by the probes and the receiver (Figure 2b); here, the blue radiance

sample from p2 incorrectly contributes to the weighted estimate.

(This is the cause of the well-known “light leaks” in irradiance vol-

ume -type methods.) Some techniques attempt to mitigate this issue

by consulting the visibility between the receiver x and the probe p2
[McGuire et al. 2017]; however, the unoccluded line of sight does not

guarantee that the radiance sample would be valid. Note, however,

that there also exist directions — marked with green arrows in Fig-

ure 2b — where p2 could appropriately contribute to the radiance

estimate at x; hence leaving p2 unused is wasteful. While sheared

reconstruction techniques alleviate some of these issues [Egan et al.

2011, 2009], they still fundamentally require denser spatial sampling

in regions of complex visibility.

3.2 Visibility-Aware Interpolation
Our key idea is to perform an intermediate reparameterization from

the angular domain onto the scene surfaces — where visibility can

be accounted for precisely — and then back into the angular domain.

That is, when querying the radiance from a receiver x in a given

directionω,we only use information from radiance probes that directly

see the point Γ(x,ω) seen by the receiver in that direction. Furthermore,

finding Γ(x,ω) allows us to consult the probes’ radiance in the

appropriately reprojected direction (Figure 2c).

Technically, we combine the spatial interpolation weightswi (x)
with directional, per-probe binary visibility weights Vi (ω) that pick
out, for each direction separately, only probes that see the same

surface point the receiver x sees. Concretely, our radiance recon-

struction is defined by

L(x,ω) ≈
∑
i wi (x)Vi (ω)L(pi ,ψi (ω))∑

k wk (x)Vk (ω)
, (2)

where the sum is over all probes, wi (x) = w(x, pi ; ri ) is a spatial

weight kernel with a finite support radius ri , Vi (ω) = V (Γ(x,ω), pi)
is the visibility between the hit point given by the ray-cast operator

Γ and the probe at pi , andψi (ω) is the direction from pi to the hit

point Γ(x,ω) (see Figure 2c). The probes’ contributions are glued
together by a partition of unity forced by the division by the sum of

the combined weights, while the spatial weights guarantee smooth

reconstruction across space. If no probe sees Γ(x,ω), we define its
radiance to be zero.

3.3 Bandlimited Probes and PRT
Notably, given infinite angular resolution at the probes, and remem-

bering the diffuse radiance field assumption, the reconstruction of

Equation (2) is exact as long as the point Γ(x,ω) is seen by at least

one probe. No set of spatial interpolation weights only can guaran-

tee this. However, a high-resolution angular sampling of the probes’

radiance is still overly expensive in terms of both computation stor-

age, as we desire to perform this operation at real-time rates at a

probe set that covers a complex scene. This motivates us to replace

the probes’ radiance fields by finite-dimensional basis expansions

given in terms of spherical harmonics. We study the effect of this

approximation in Section 3.4.

Concretely, we approximate the probes’ radiance fields by

L(pi ,ω) =
∑
j
λi jYj (ω), (3)

where λ, the probe radiance vector, contains the basis expansion

coefficients for all probes flattened into a long vector, and Yj are
the spherical harmonic basis functions. For convenience, we index

the probe radiance λ using probe index i and basis function index j .
Each color band has its own vector λr ,λд ,λb , but we omit these

for simplicity of notation except when otherwise noted.

For a fixed receiver x, we define a local transport operator Px {λ}(ω)
that transforms the probe radiance vector λ to interpolated inci-

dent radiance at x as a function of the continuous direction ω by

evaluating Equation (2) using the probes’ basis expansions:

Px {λ}(ω) =

∑
i wi (x)Vi (ω)

∑
j λi jYj (ψi (ω))∑

k wk (x)Vk (ω)
(4)

=
∑
i

∑
j
λi j

wi (x)Vi (ω)Yj (ψi (ω))∑
k wk (x)Vk (ω)

=
∑
i

∑
j
λi jKi j (x,ω),

with Ki j (x,ω) =

{wi (x)Vi (ω)Yj (ψi (ω))∑
k wk (x)Vk (ω)

if

∑
k wk (x)Vk (ω) > 0

0 otherwise.
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Fig. 3. a) Legend. Typical direct-to-indirect transport methods aim to compress the dense global transport operator (b) using a global, fixed

hierarchy over the senders and receivers (c). We instead factorize the global transport operator into two parts: global probe transport and sparse

“last-leg” local interpolation (d).
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Fig. 4. Scene with a spotlight and a receiver (top left). We are seeking to reconstruct the irradiance at the receiver (top left). The ceiling geometry

is subdivided into three piecewise constant hierarchical sender patches (bottom left). Hierarchical transport with piecewise constant basis functions

amounts to multiplying the direct light coefficients in the sender basis with the precomputed transport coefficients, but using only three coefficients

results in a poor approximation to the receiver irradiance (bottom left). Our factorized approach allows efficient decoupling of high-frequency

near-field visibility from low-frequency illumination (left). The direct lighting is projected to the probe basis (top right). Our local transport results

in more accurate reconstruction of the receiver irradiance with fewer coefficients due to decoupled near-field visibility (bottom right).

The transport kernel Ki j (x,ω) is the angular function that results

from projecting the value of the jth spherical harmonic from the

ith probe onto the scene surface seen in the direction of Γ(x,ω),
modulated by visibility, and divided by the weights of other probes.

The intuitive meaning of the linear combination is that the probes

project their approximate radiance functions onto surfaces visible

to them, and the receiver blends together results from all probes

that see the point Γ(x,ω).

Precomputed Transport. The local transport operator Px can be

used to measure the interpolated incident radiance at x in various

ways. Owing to linearity, and, in line with the voluminous literature

on precomputed radiance transfer, the result of the measurement

with a general spherical function Φ is a linear function of the probe

radiance vector λ:

⟨Px {λ},Φ⟩ =

∫
Px {λ}(ω)Φ(ω)dω (5)

=
∑
i

∑
j
λi jϕi j , (6)

where the transport coefficients ϕi j are given by ⟨Ki j (x, ·),Φ⟩.

Irradiance Transport. In particular, the irradiance I (x) at a receiver
x is computed by measuring the interpolated approximate radiance

field by the cosine lobe:

I (x) ≈
∫

Px {λ}(ω) cosθdω =
∑
i j
λi jαi j , (7)

where the double indices i and j have been flattened using a single,

linear index ij for notational convenience, and the entries of the irra-
diance transport vectorαx are given by αi j = ⟨Ki j (x, ·), cosθ⟩. This
corresponds to the SH transport vectors of, e.g., Sloan et al. [2002].

Note that most entries in αx are zero, as only few probes contribute

to each receiver.

Radiance Transport. We approximate the interpolated incident ra-

diance field at x using a directional basis expansion with orthogonal

basis functions Bk :

L(x,ω) ≈ Px {λ}(ω) ≈
∑
k

bkBk (ω). (8)

Finding the expansion coefficientsbk reduces tomeasuringPx {λ}(ω)
by the basis functions Bk (ω), which yields the radiance transport

matrix Bx with entries β(i j)k = ⟨Ki j (x, ·),Bk ⟩, again in line with

the transport matrices of Sloan et al. and others. The coefficients of
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transported radiance are given by Bxλ. Bx is a nk × ninj radiance
transport matrix, where nk is the number of receiver basis functions,

ni is the number of probes, and nj is the number of probe basis func-

tions. The rows contain the transport vectors for the corresponding

basis functions:

Bx =


β(1,1),1 β(1,2),1 · · · β(ni ,nj ),1
...

. . .
...

β(1,1),nk β(1,2),nk · · · β(ni ,nj ),nk

 . (9)

Note, again, that due to the local support of the weightswi (x), this
matrix is sparse: only few probes contribute to each receiver.

A Note on Color. Importantly, as the color of surfaces seen by

the probes is encoded in the probe radiance vectors, the transport

coefficients ϕi j are decoupled from surface color, and encode only

geometric information. In particular, this means that we are free

to change surface properties, such as diffuse albedo and emissivity,

without changing the transport coefficients.

Discussion. Previous direct-to-indirect transport methods aim

to efficiently compute and store the global transport operator that

maps basis expansions of (ir)radiance defined at the scene surfaces

into basis expansions that describe indirect illumination, again on

the scene surfaces, linking senders and receivers globally across

the scene [Hašan et al. 2006; Jendersie et al. 2016; Lehtinen et al.

2008; Loos et al. 2011]. In this framework, our approach is to instead

factorize the global transport operator into two parts: a precom-

puted local transport matrix that accounts for near field effects

between the receiver and the mutually visible surfaces seen by the

probes, and a global probe transport operator that captures radi-

ance (also far-field) in a sparse set of probes at runtime (Figure 3).

In effect, our construction amounts to a local, custom sender ba-

sis for each receiver given in terms of the local probes only. This

automatically decouples the effects of high-frequency near-field

visibility and slowly-varying distant irradiance in a natural way

without the need for increasing the number of hierarchical trans-

port links (Figure 4), enabling high-quality indirect shadows with

a small number of precomputed transport coefficients. The global

probe transport operator can be implemented in a variety of ways

(e.g. our precomputed gather from texture, rendering cube maps,

hierarchical direct-to-indirect methods); all it needs to produce are

the SH expansions of incident radiance at the probe locations.

3.4 Analysis
To analyze our interpolator, we study a flatland scenario depicted

in Figure 5a. The scene consists of a planar (line) receiver at y = 0,

and two textured surfaces at y = 0.25 (small, greenish segment) and

y = 2 (larger, reddish segment). In addition, a bright area light is

situated in the middle of the reddish surface. We study the light

field incident onto points on the receiver as a function of space x
and anglew using the angle parameterization of Chai et al. [2000]:

the direction w of a ray emanating from a point x is specified by

its intersection with the y = 1 line, such that an intersection point

directly above x always means w = 0. The incident radiance field

on the receiver is shown in Figure 5b, where the two blue example

rays in Figure 5a correspond to the two marked points.

Figure 5c depicts a version of the light field that has been bandlim-

ited (blurred) along the angular dimension, but with full resolution

along the x axis. Note how the extremely bright light correspond-

ingly “bleeds” along the angular dimension, but not along the spa-

tial dimension: receiver points that do not see any part of the light

source remain properly occluded. Ramamoorthi and Hanrahan’s

[2001] and Basri and Jacobs’ [2003] deep results tell us that given a

low-frequency BRDF at the receiver, we can reconstruct outgoing

radiance from such bandlimited incident signal. This permits us to

seek reconstruction of this bandlimited signal instead of the original

signal with full resolution over angle.

Next, we introduce a sparse spatial sampling of the bandlimited

light field (Figure 5d). This stage corresponds precisely to computing

finite SH expansions over the angular domain at a sparse set of probe

locations. (The sample columns have been fattened for visualization

only; they are Diracs in x .)
Figure 5e illustrates naive interpolation from the samples using

Equation 1. This corresponds to blending the probes’ SH coefficient

vectors using the spatial weighting functionswi (x). This results in
significant light leaking and blurring.

Our visibility-aware reconstruction is depicted in Figure 5f. For

each ray (x ,w) in the output light field, we consult nearby probes,

and use their radiance value (which is bandlimited in angle) for

reconstruction only if the point seen at the end of the ray (x ,w)

is visible to the probe too. This panel clearly illustrates our ap-

proximation: due to the bandlimited probes’ inability to represent

discontinuities, the light source seen by the probe influences also

surfaces that are nearby the light source in angle (diagonal light

streaks along the edges of the green surface). However, the accuracy

of the approximation increases with the angular bandwidth of the

probes. This is seen in the final panel (Figure 5g) which illustrates

reconstruction from the same set of 10 spatial probe locations, but

with increased angular resolution.

Figure 6 depicts the interpolation in a realistic scenario. Radiance

from two bandlimited probes is interpolated in a visibility-aware

manner to a third receiver point and compared to the standard

interpolation. In addition to the flatland example, this figure also

includes a final convolution of the radiance field with the cosine

kernel (panels j, k); this is the irradiance function seen by the re-

ceiver as a function of the surface normal. As can be seen, while the

reconstruction of angular variation is not perfect, once the inter-

polated radiance function is convolved with the cosine kernel, the

reconstruction can remain faithful.

4 IMPLEMENTATION
This section describes our practical global illumination technique

using our factorized transport approach. We describe how we pre-

compute and compress the local transport operator in Section 4.1.

The runtime part, including details on how we evaluate the probe

transport, is described in Section 4.2.

4.1 Precomputation
Probe Locations and Radii. Our goal is to find a sparse set of

probe locations and support radii with the two properties: 1) every

surface point is under the support of at least one probe, and, 2),

every surface point is visible from at least one probe.
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Fig. 5. 2D analysis of sampling and reconstruction of a diffuse radiance field from sparse spatial samples bandlimited in angle (cf. Section 3.4). a)

Scene. The planar receiver sits at y = 0. Two surfaces at y = 0.25 and y = 2 shine radiance onto the receiver. A bright area light is situated in the

middle of the further occluder. Rays emanating from the occluder are parameterized by their x coordinate and their intersection with the y = 1 line.

b) The light field seen by the receiver over space x and anglew . The two rays from the previous panel are indicated. c) The light field, bandlimited

(blurred) over angle, but not space. This bandlimited version suffices to reconstruct reflected radiance for low-frequency BRDFs at the receiver

[Basri and Jacobs 2003; Durand et al. 2005; Ramamoorthi and Hanrahan 2001]. d) A sparse spatial sampling of the angle-bandlimited light field. e)

Reconstruction from the samples by spatial blending only (Equation (1); no reprojection/shearing, no visibility). f) Our reconstruction from the

same samples. g) Our reconstruction from the same samples, but with increased angular bandwidth (samples are sharper inw). As all surfaces are

seen by a probe, the result converges to ground truth with increasing bandwidth — even with this fixed set of spatial samples.

To find the probe locations, we use a greedy algorithm with a sin-

gle parameter ρ
probes

, the desired spacing. To avoid placing probes

inside scene geometry, we first voxelize the scene and flood-fill the

empty interior space. Next, we generate a vastly overcomplete set

of candidate locations pi in empty voxels near the scene surfaces,

i.e., in empty voxels with non-empty neighbors. We then compute

a kernel density estimate from the candidates pi using the weight
function wi (x; ρprobes) (see below), and iteratively remove candi-

dates from the densest regions until we have met our target probe

count. To avoid introducing additional parameters, we set the target

probe count to the number of points in a regular grid that covers

the scene with grid spacing set to ρ
probes

.

Every receiver should fall under the support of at least one probe,

but smooth spatial interpolation necessitates coverage frommultiple

probes for each receiver. The user provides the desired number

N
overlap

of overlapping probes per receiver. Since the probe set

obtained in previous step has approximately constant density, we

use a fixed radius r for all probes, i.e., ri ≡ r . To find r , we perform
a search over possible radii and choose the one that best satisfies

the overlap constraint on average. All our results use N
overlap

= 10.

Spatial Weight Function. For spatial interpolation, we use a radial
weight kernel wi (x; r ) = w(∥x − pi ∥2/r ), where r is the radius

obtained in the previous step, andw(t) is given by

w(t) =

{
2t3 − 3t2 + 1, if 0 ≤ t ≤ 1

0, otherwise.
(10)

Precomputed Radiance Transport and Compression. We proceed

to precompute transport coefficients αx or Bx for all receivers. (Sec-

tion 5 shows results for both irradiance (scalar) and 1st order SH

transport.) Receivers are only linked to probes whose support ra-

dius covers the receiver: other probes contribute nothing as per

Equation (2). The coefficients are then compressed using Clustered

Principal Components Analysis [Sloan et al. 2003]: receivers are

split to clusters, and the transport matrices in each cluster approxi-

mated separately. More precisely, the transport vectors/matrices of

all receivers in a cluster c are stacked vertically into the matrix Tc ,

and the Singular Value Decomposition applied:

Tc = UΣVT ≈ UcΣcVTc . (11)

Compression is obtained by replacing the diagonal matrix of singu-

lar values Σ with a truncated version Σc , where only the nc largest

entries have been kept. The cluster projection matrix ΣcVTc has size

nc ×ninj (recall thatni is the total number of probes andnj the num-

ber of basis functions captured by the probes). As only few receivers

contribute to a spatially coherent cluster of receivers, large blocks

of the columns of ΣcVTc are zeros — it suffices to store the non-zero

columns. The receiver reconstruction coefficient matrix Uc encodes

the linear response of each receiver in the cluster to each of the nc
dimensions of the intermediate cluster-specific illumination basis;

i.e., it contains ncnk numbers per receiver, where nk is the number

of rows in the radiance transport matrix Bx (in case of irradiance,

nk = 1). The cluster projection matrix ΣcVTc and reconstruction

coefficients Uc are stored in 16-bit floating point.

As computing the SVD for very large matrices is inefficient, we

build, in departure from Sloan et al. [2003], our clusters in two steps.

An initial clustering is obtained by building an AABB-tree over the

receiver positions, splitting the longest axis until the leaf nodes

contain fewer than 1024 points. The clusters are then adaptively

refined [Sloan et al. 2003] based on a fixed error threshold and a

maximum number of SVD coefficients (we use a threshold of 0.005

and a maximum of 32 coefficients).

4.2 Runtime
Probe Transport. Our method places no restrictions on how to

compute the probe transport, i.e., the probes’ SH coefficients λ at

runtime.We choose to perform the projection with the aid of a direct

illumination light map that is updated every frame, accounting for

the diffuse albedo and emissivity of each surface point. For each

probe, we use a fixed set of uniformly distributed “relight rays”, and

precompute the direct light mapuv coordinates of the relight ray hit

points ahead of time by tracing visibility rays (this does not preclude

dynamic blockers; see section 5.1). At runtime, the probes merely
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(a) View from probe p1 (b) View from receiver x (c) View from probe p2

(d) SH projection of (a) (e) SH projection of (b) (f) SH projection of (c)

(g) Reconstr. of (b) from

(d), (f) by Eq (4) (vis. only)

(h) SH projection of (g)

(visualization only)

(i) Interpolated (d), (f)

(fails, visibility-agnostic)

(j) Cosine convolved (e)

(ground truth)

(k) Cosine convolved (h)

(our result)

(l) Cosine convolved (i)

(fails, visibility-agnostic)

Fig. 6. Illustration of visibility-aware interpolation. (a)-(c) Fisheye

views from probes p1, p2, and receiver x. (d)-(f) Spherical harmonic

approximations of the angular radiance field at the probes and the

receiver. (d) and (f) are computed at runtime; the expansion (e) is for

visualization only, and is never formed explicitly. (g), (h) visualize

the interpolated radiance field seen by the receiver, as evaluated by

Equation (4), and its SH projection. In a perfect reconstruction, (g) =

(b) and (h) = (e). This spherical image is also never explicitly formed.

(i) visualizes the SH expansion obtained by directly interpolating the

SH coefficients λ1,2 (cf. Figure 2a). This fails due to lack of visibility
awareness. (j), (k) The diffuse BRDF acts as a low-pass filter to the

radiance field [Ramamoorthi and Hanrahan 2001]. Even though the

radiance field is not matched precisely, the low frequencies remain

relatively intact through our entire pipeline. This is apparent in the

match between (j) and (k) (fourth row).

loop over all their relight rays, consult the current radiance at the

appropriate uv coordinates in the direct illumination texture, and

multiply by the spherical harmonics at the appropriate direction. To

avoid evaluating spherical harmonics at runtime, we precompute

their values together with the proper PDF-weights in the directions

of the relight rays.

Cluster Radiance Transport. Once obtained, the probe radiance
vector λ is transformed by the PCA clusters’ projection matrices

ΣcVTc to yield the nc dimensional light basis vector for each cluster.

These coefficients are finally multiplied by the cluster’s receiver

reconstruction coefficients Uc to obtain the nk -dimensional trans-

ported radiance coefficients at each receiver. The result is then used

to compute the reflected radiance by evaluating the receiver BRDF.

For scalar irradiance transport, this reduces simply to multiplication

with the local albedo and division by π . Higher-order transport
can be evaluated in various ways. In our results, we use an order-1

version of the irradiance convolution of Ramamoorthi and Han-

rahan [2001] to support normal mapping. This means scaling the

transported SH coefficients by fixed constants and evaluating the

resulting 4-term expansion in the direction of the surface normal.

To account for infinite light bounces, the resulting diffuse com-

ponent of the outgoing radiance is fed back to the system and used

as input for the next direct-to-indirect transport iteration.

5 RESULTS
We have implemented our method using C++ and DirectX 11, using

compute shaders to evaluate the runtime radiance transport. All

images in this paper contain the raw output of our method without

any additional screen-space ambient occlusion or reflection effects.

In all results, we define the receivers as the sample points of a

light map’s texels for ease of final reconstruction from the camera’s

point of view (for resolutions, see Table 1; note that any other set

of receivers can be used just as well). The accompanying video

features animations with dynamic lights. In addition to the standard

Cornell and Sponza, we demonstrate the method on two novel

scenes, Gallery from a “triple-A” Xbox One title, and Brutalist

Hall from an unannounced title. All results are computed on a Intel

Core i7-3770K CPU PC with 32 GB memory and NVIDIA Titan X

Pascal GPU. Unless otherwise noted, all results are computed with

probes of SH order 7 (64 basis functions) and irradiance (scalar)

transport (Equation 7). All scenes use a direct illumination light

map of size 2048
2
to gather direct illumination to the surfaces prior

to computing the probe radiance vectors. We use 8000 relight rays

per probe.

Comparison to Ground Truth. A sampling of our results is shown

in Figure 7. The figure compares our irradiance transport against

a converged reference, where the irradiance at the same light map

texels is computed using path tracing. In order to reveal all the

intricate lighting details, we show our comparisons without albedo

maps, as they tend to hide lighting imperfections. Please see the

accompanying video for dynamic illumination in the same scenes.

While using only less than 90MB of GPUmemory and < 5ms of GPU
time for indirect lighting, we observe a generally good match with

the reference with the chosen parameters. Section 5.2 presents anal-

ysis of errors. Table 1 provides detailed statistics of our scenes and
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Textured view, probes and 16x error Our result Path traced lightmaps
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Fig. 7. We compare our results (left and middle) to path traced reference (right) using three scenes, (Gallery, Sponza, and Brutalist Hall)

and two different lighting configurations in each scene. The probe positions are shown in insets in the left column. We show the comparisons

as lighting-only images assuming a constant albedo of (0.5, 0.5, 0.5). Note that the albedo maps still contribute to the indirect lighting. The

supplemental material contains all images in uncompressed form. Please see the supplemental video for dynamic illumination.
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Direct lighting & probes Interpolated SH irradiance [Arikan et al. 2005] Our result Reference

Fig. 8. We compare our interpolation (middle right) to spatial interpolation (middle left) and to radiance caching with irradiance decomposition

[Arikan et al. 2005] (middle). The images show indirect illumination from two point light sources with varying number of probes (left). Our method

is closer to the path traced reference (right) in both cases and yields superior results in the sparse probe setting.

Table 1. Statistics and memory consumption for all test scenes. Precomputation time contains both radiance and irradiance transport. For

performance figures, see Table 2.

Transport statistics Compression statistics and memory

Scene Precomp.
time

Lightmap
resolution #Probes #Receivers #Clusters Avg. #SVD

coeffs./receiver
Avg. #Probes /
SVD cluster

Total
memory

Gallery 52 min 1216
2

275 321 745 2311 15.56 17.55 86MB

Sponza 45 min 1216
2

150 246 325 935 24.41 20.17 72MB

Brutalist Hall 72 min 1088
2

260 567 370 2223 18.89 13.40 89MB

Table 2. Timing breakdowns for our test scenes.

Scene Scene
relight (ms)

Probe
relight (ms)

Cluster SVD
projection (ms)

Receiver
irradiance (ms) Total GPU (ms)

Gallery 0.70 0.84 2.06 0.30 3.90
Sponza 0.36 1.01 1.00 0.13 2.50
Brutalist Hall 1.28 1.55 1.80 0.24 4.87

transport parameters, including the number of probes and memory

usage. See Table 2 for a timing breakdown for the indirect lighting.

In all scenes, the full rendering is performed at 90 FPS.

Dynamic Material Properties. Since the precomputed transport

coefficients do not encode any material information, we support

dynamic surface material properties, such as textured diffuse albedo,

emissivity, normal maps and surface roughness, all of which can

be freely changed or animated at runtime. Figure 9d demonstrates

area shadows from a door with an emissive surface material. See

the accompanying video for an interactive session.

Temporal Stability. The accompanying result video demonstrates

the our method is temporally stable and does not suffer from flicker-

ing artifacts. Temporally stable results are achieved by maintaining

a sufficient sample rate when sampling the input illumination.

Comparison to Previous Methods. Figure 8 shows a comparison

between our method and the local-global irradiance separation of

Arikan et al. [Arikan et al. 2005]. Like ours, their method interpo-

lates spherical harmonics illumination vectors from nearby probes.

In contrast to our technique, they proceed to heuristically subtract

radiance from local occluders processed one triangle at a time, re-

sulting in double occlusion from overlaid occluders due to lack of
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proper occluder fusion. To compare, we implemented an idealized

version of their technique using accurately sampled visibility in-

stead of their approximation; this effectively compares against the

best-case output of their method. Spatial-only interpolation (Equa-

tion 1) is included as a reference in Figure 8; it does not yield usable

results with a small number of probes. Using the same sparse set of

probes, the interpolation of Arikan et al. contains visible artifacts.

When the probe count is increased, both comparison methods start

to resemble the ground truth, but our method is closest to the path

traced reference in both cases. Notably, our interpolator yields a

high-quality result also with the sparse probe set.

Discussion. The uncompressed local transport matrix has dimen-

sions Receivers × Probes · SHBasisFunctions and the probe trans-

port matrix has dimensions Probes · SHBasisFunctions × Probes ·
ReliдhtRays . Typical numbers are 500K receivers, 200 probes, 64 SH

basis functions and 8000 relight rays. Compared to the full transport

matrix consisting of all senders and receivers, the total number of

coefficients in our factorized transport correspond to an effective

sparsity factor of the order 10
−4

for uncompressed matrices. With

SVD compression, the observed effective sparsity factor is of order

10
−5
. Previously, Lehtinen et al. [2008] reported sparsity factors of

order 10
−3
. However, the results are not directly comparable, as the

reported numbers are from different scenes and using a different

receiver/sender parametrization.

5.1 Extensions
Normal Mapping. Normal maps are used to add high-frequency

surface details without increasing the triangle count of the scene.

Unfortunately, scalar transport is insufficient to support normal

mapping at the receivers, as the irradiance varies with the local

surface normal. To enable normal mapping, we instead project the

interpolated radiance signal to order-1 spherical harmonics (4 coeffi-

cients) at the receivers (Equation 8), allowing us to apply an order-1

version of Ramamoorthi and Hanrahan’s [2001] efficient irradiance

convolution in the SH domain. To counter the increased memory

use due to the richer representation (4 instead of 1 transport coeffi-

cients per receiver), we simultaneously lower the probes’ SH order

to 4 (25 coefficients). These changes result in approximately the

same memory use as scalar transport using order-7 probes. Figure

9a shows an example. Naturally, the overall accuracy suffers due to

the probes’ lower angular bandwith, but results remain plausible;

increasing the order at both receivers and the probes allows more

faithful results at the cost of more memory and GPU time.

Glossy Materials. While a low-order expansion allows normal

mapping on diffuse surfaces, the low bandwidth of the angular vari-

ation at the receivers is not sufficient to enable accurate rendering of

glossy or specular materials; in practice, increasing the receiver SH

order sufficiently quickly ends up in a storage and runtime problem.

We can, however, support an approximate form of specular transport

by interpreting the linear terms in the SH expansion as a directional

light source [Sloan 2008], with the diffuse component given by the

DC term, and apply any standard BRDFmodel to this approximation.

Figure 9b depicts an example (only specular illumination shown).

Here, we use a Cook-Torrance BRDF with GGX normal distribution

and Smith shadowing-masking term [Walter et al. 2007]. Although

this is a crude approximation, it provides visually pleasing results

at negligible additional cost.

Dynamic Occluders. While our basic technique is fixed to a scene

through precomputation, the local supports of the probes allows

insertion of dynamic blockers; intuitively, as probes only affect

receivers close by, changes in radiance seen by the probes due to

moving objects have at least some hope of being captured in the local

interactions. Figure 9c demonstrates a soft area-light shadows from

a dynamic sphere occluder blocking the relight rays. Naturally, the

accuracy of the approximation depends on the size of the occluder

relative to the probe density: detailed occlusion from small occluders

is generally not possible with a sparse probe set. However, larger

objects, such as dynamic doors and windows, yield usable results

in many cases, and we expect this to increase the applicability of

our method in practical applications. Please see the accompanying

video for an interactive session.

5.2 Error Analysis
Reconstruction Error. We analyze the expected error in irradiance

reconstruction by studying how the incident light field changes

at a fixed receiver by a round trip to the probes and back. That is,

taking a ground truth angular radiance field at the receiver, we use

our interpolation technique to project it backwards to the probes,

then back to the receiver, and comparing the two. The better the

reconstruction enabled by the probe set, the smaller the difference.

To enable numerical estimation, we represent the incident ra-

diance at a fixed receiver x using a order 9 (100-coefficient) SH

expansion, called the receiver radiance vector λx. The receiver radi-
ance is first projected to the probes’ SH basis via a dual projection

operator P∗
defined analogously to the forward one: each probe

takes the role of a receiver, and the receiver becomes the only probe

and has infinite support. This gives us the probe radiance vector

λ = P∗λx that represents the receiver light field projected to the

probes’ perspectives. To pull the radiance back to the receiver, we

apply our reconstruction operator Px {λ} to the probe radiance

vector λ, and measure the reconstructed irradiance with a cosine

measurement functional. Putting this together, the squared irradi-

ance reconstruction error E(x) for a fixed receiver radiance vector

λx is

E(x;λx) = ∥⟨cosθ , (I − Px {λ}P
∗)λx⟩∥

2

2
, (12)

where I is the identity operator. We note that the error is quadratic in

the probe radiance vector, and that we can consequentlymeasure the

average round-trip error over all possible unit radiance vectors λx
by computing the L2 operator norm of the linear operator ⟨cosθ , (I−
Px {λ}P∗) ·⟩. The inclusion of the the cosine measurement term

ensures that we measure error in irradiance reconstruction (the final

result we seek), not the intermediate radiance reconstruction. The

norm is visualized in the bottom row of Figure 10 in Cornell. As

can be seen, increasing the density of probes causes a reduction in

the expected error.

Probe Density vs. Quality. Figure 10 visualizes the effect of probe
density to reconstruction error. The first rows visualize the trans-

ported irradiance in Cornell with an increasing probe count in a

fixed lighting condition and using order-7 probes (64 coefficients).
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a) Normal mapping

b) Indirect

specular lighting

c) Dynamic indirect shadowing from

moving sphere blocker

d) Dynamically turning

surface to area light

Fig. 9. Extensions (see Section 5.1 and the accompanying video). a) Normal mapping through 1st-order transport to receivers. b) Approximate

indirect specular lighting by interpreting 1-st order radiance at receivers as a directional light. c) A dynamic sphere blocker used for modulating

the visibility during probe relight. d) The emission of any surface may be changed at will at no extra runtime cost. Here the polygons in a door in

Sponza have been turned emissive; soft shadows automatically result.
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a) 2 probes c) 10 probes c) 29 probes d) Path traced ground truth

Fig. 10. Effect of the density of light probes on the accuracy of illumination using order-7 probes (64 coefficients). Top two rows: The Cornell box

in fixed illumination. Only incident irradiance is visualized for added clarity (surface albedo not shown, but causes color bleeding). The thumbnails

on the middle rows show the position of the probes. Even with only two probes, the indirect illumination is captured relatively faithfully. Loss of

detail in small-scale local indirect shadows can be noticed, but additional probes remedy the situation. Notice, in particular, the erroneous red color

bleeding in the inset in column a). Bottom row:Visualization of the operator norm of the forward-and-backward projection operator (Section 5.2).

The color denotes the average L2 error over all possible illuminations conditions. Note how areas of high error correspond to the regions of poorer

fidelity in the result images above.
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a) SH 0 (1 coefficients) b) SH 1 (4 coefficients) c) SH 2 (9 coefficients) d) SH 7 (64 coefficients) e) Reference

Fig. 11. Effect of the order of the probes’ SH expansions on the final result. Lighting only (top). Difference to ground truth (16x magnified, bottom).

Differences between successive approximations quickly taper off to the point it is hard to see them in a side-by-side visualization; the reader is

encouraged to flip back and forth between the full-resolution images provided in the supplemental material.

Fig. 12. This figure demonstrates a failure case due to insufficient

probe density and bandwidth. Path-traced reference reference (middle)

contains a high-frequency secondary area light source (green), and our

reconstruction (left) has blurred the incident radiance field in the near

vicinity (red). The error is localized to the bottom-right region (right),

where the probe density and bandwidth are too low to represent the

incident illumination, leaving most of the image unaffected.

Only irradiance is shown, as final multiplication by the albedo hides

problems even in this simple scene. The small thumbnails in the

middle row show the positions of the probes. Generally, the irra-

diance is reconstructed remarkably well even from just 2 probes.

However, erroneous color bleeding and washed-out indirect shad-

ows can be observed (see inset). The bottom row shows a heat-map

visualization of the L2 operator norm of the back-and-forth trans-

port operator that attempts to reconstruct the receivers’ original

radiance field by projecting to the probes and back; this visualiza-

tion is not tied to a particular lighting condition (see above). We

note how the areas of worst mismatches between our result and

the reference can be found in the areas of higher error. As expected,

increasing the density of the probes reduces the expected error.

Probe SH Order vs. Quality. Figure 11 visualizes the quality of

transported irradiance at a fixed lighting condition and fixed probe

set as a function of the probes’ bandwith, i.e., the number of basis

functions nj . Results remain plausible even at very low orders, and

fidelity quickly increases to the point it is difficult to see the differ-

ences side by side. The reader is encouraged to flip back-and-forth

in the full-resolution images found in the supplemental material.

Interestingly, the quality difference resulting from lowering the

probes’ SH order can be countered by a denser spatial sampling: the

closer the probes are to the receivers, the less bandwidth they need.

Previous analysis show that in the limit, when probes coincide with

receivers, order 2 is sufficient for high-fidelity reconstruction [Ra-

mamoorthi and Hanrahan 2001]. A full study of the 2D parameter

space remains future work.

A Typical Failure Case. As shown by the various analyses above,

the reconstruction error of our method is directly linked to probe

density and bandwidth. Figure 12 shows a typical failure where the

angular bandwidth at the probes is insufficient to capture the local

light field in enough detail given the sparsity of the probes.

6 CONCLUSION
We have described a technique for interpolating radiance from

sparse samplings of a diffuse light field, where the angular band-

width (resolution) of the samples is limited due to their representa-

tion as spherical harmonics expansions. Despite these limitations

(sparsity, low bandwidth), our method allows a much more faithful

reconstruction of the incident light field than previous techniques

that make use of such sparse sample sets.

It remains an interesting challenge to incorporate light field analy-

sis tools in the sampling stage to drive the positions and bandwidths

of the light probes. Furthermore, it is intriguing to see if our inter-

polation on surfaces seen by samples and receivers (as opposed to

locally in the space-direction parameterization near the receiver)

enables sampling of also non-diffuse light fields using spatial sam-

plings that are sparser than previous local analyses of sampling and

reconstruction would indicate.
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